Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 10(2): 475-484, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32190572

RESUMO

BACKGROUND: The primary goal of many computer-assisted surgical systems like robotics for total knee arthroplasty (TKA) is to accurately execute a preoperative plan. To assess whether the preoperative plan was executed accurately in 3D, one option is to compare the planned and postoperative implant placement using a preoperative and postoperative CT scan of the patient's limb. This comparison requires a 3D-to-3D surface registration between the preoperative and postoperative 3D bone models and between the planned and postoperative 3D implants. Hence, the present study aimed at validating this measurement technique by determining (I) the anatomical regions that result in the lowest 6-degree of freedom (DoF) errors for 3D-to-3D surface registration of bone models, (II) the 6-DoF errors for 3D-to-3D surface registration of the implant models, and (III) the 6-DoF of the complete measurement technique. METHODS: Four different regions of the femur were tested to determine which one would result in the most accurate 3D-to-3D registration of the bone models using 12 cadaveric lower limb specimens. Next, total knee arthroplasties were performed on six specimens, and the accuracy of the 3D-to-3D implant registration was evaluated against a gold standard registration performed using fiducial markers. RESULTS: The most accurate 3D-to-3D bone registration was obtained when using the largest anatomical regions available after TKA, being the full 3D femur model or the femur model without the distal femur which resulted in root mean square errors within 0.2 mm for translations and 0.2° for rotation. The accuracy of the 3D-to-3D femoral and tibial implant registration was within 0.7 mm for translations and 0.4°-0.6° for rotations, respectively. The accuracy for the overall procedure was within 0.9 mm and 0.6° for both femur and tibia when using femoral regions resulting in accurate 3D-to-3D bone registration. CONCLUSIONS: In conclusion, this measurement technique can be used in applications where measurement errors up to 0.9 mm in translations and up to 0.6° in rotations in component placement are acceptable.

2.
J Biomech ; 48(5): 816-22, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25582355

RESUMO

The relative role of the cortical vs trabecular bone in the load-carrying capacity of the proximal femur-a fundamental issue in both basic-science and clinical biomechanics-remains unclear. To gain insight into this issue, we performed micro-CT-based, linear elastic finite element analysis (61.5-micron-sized elements; ~280 million elements per model) on 18 proximal femurs (5M, 13F, ages 61-93 years) to quantify the fraction of frontal-plane bending moment shared by the cortical vs trabecular bone in the femoral neck, as well as the associated spatial distributions of stress. Analyses were performed separately for a sideways fall and stance loading. For both loading modes and across all 18 bones, we found consistent patterns of load-sharing in the neck: most proximally, the trabecular bone took most of the load; moving distally, the cortical bone took increasingly more of the load; and more distally, there was a region of uniform load-sharing, the cortical bone taking the majority of the load. This distal region of uniform load-sharing extended more for fall than stance loading (77 ± 8% vs 51 ± 6% of the neck length for fall vs. stance; mean ± SD) but the fraction of total load taken by the cortical bone in that region was greater for stance loading (88 ± 5% vs. 64 ± 9% for stance vs. fall). Locally, maximum stress levels occurred in the cortical bone distally, but in the trabecular bone proximally. Although the distal cortex showed qualitative stress distributions consistent with the behavior of an Euler-type beam, quantitatively beam theory did not apply. We conclude that consistent and well-delineated regions of uniform load-sharing and load-transfer between the cortical and trabecular bone exist within the femoral neck, the details of which depend on the external loading conditions.


Assuntos
Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Acidentes por Quedas , Idoso , Idoso de 80 Anos ou mais , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Pessoa de Meia-Idade , Microtomografia por Raio-X
3.
J Bone Miner Res ; 29(2): 507-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23832419

RESUMO

The etiology of hip fractures remains unclear but might be elucidated by an improved understanding of the microstructural failure mechanisms of the human proximal femur during a sideways fall impact. In this context, we biomechanically tested 12 cadaver proximal femurs (aged 76 ± 10 years; 8 female, 4 male) to directly measure strength for a sideways fall and also performed micro-computed tomography (CT)-based, nonlinear finite element analysis of the same bones (82-micron-sized elements, ∼120 million elements per model) to estimate the amount and location of internal tissue-level failure (by ductile yielding) at initial structural failure of the femur. We found that the correlation between the directly measured yield strength of the femur and the finite element prediction was high (R(2) = 0.94, p < 0.0001), supporting the validity of the finite element simulations of failure. In these simulations, the failure of just a tiny proportion of the bone tissue (1.5% to 6.4% across all bones) led to initial structural failure of the femur. The proportion of failed tissue, estimated by the finite element models, decreased with decreasing measured femoral strength (R(2) = 0.88, p < 0.0001) and was more highly correlated with measured strength than any measure of bone volume, mass, or density. Volume-wise, trabecular failure occurred earlier and was more prominent than cortical failure in all femurs and dominated in the very weakest femurs. Femurs with low measured strength relative to their areal bone mineral density (BMD) (by dual-energy X-ray absorptiometry [DXA]) had a low proportion of trabecular bone compared with cortical bone in the femoral neck (p < 0.001), less failed tissue (p < 0.05), and low structural redundancy (p < 0.005). We conclude that initial failure of the femur during a sideways fall is associated with failure of just a tiny proportion of the bone tissue, failure of the trabecular tissue dominating in the very weakest femurs owing in part to a lack of structural redundancy.


Assuntos
Acidentes por Quedas , Colo do Fêmur , Modelos Biológicos , Absorciometria de Fóton , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Feminino , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/metabolismo , Colo do Fêmur/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...