Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 83(19): 3284-3304, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37450351

RESUMO

Immunotherapies have yet to demonstrate significant efficacy in the treatment of hormone receptor-positive (HR+) breast cancer. Given that endocrine therapy (ET) is the primary approach for treating HR+ breast cancer, we investigated the effects of ET on the tumor immune microenvironment (TME) in HR+ breast cancer. Spatial proteomics of primary HR+ breast cancer samples obtained at baseline and after ET from patients enrolled in a neoadjuvant clinical trial (NCT02764541) indicated that ET upregulated ß2-microglobulin and influenced the TME in a manner that promotes enhanced immunogenicity. To gain a deeper understanding of the underlying mechanisms, the intrinsic effects of ET on cancer cells were explored, which revealed that ET plays a crucial role in facilitating the chromatin binding of RelA, a key component of the NF-κB complex. Consequently, heightened NF-κB signaling enhanced the response to interferon-gamma, leading to the upregulation of ß2-microglobulin and other antigen presentation-related genes. Further, modulation of NF-κB signaling using a SMAC mimetic in conjunction with ET augmented T-cell migration and enhanced MHC-I-specific T-cell-mediated cytotoxicity. Remarkably, the combination of ET and SMAC mimetics, which also blocks prosurvival effects of NF-κB signaling through the degradation of inhibitors of apoptosis proteins, elicited tumor regression through cell autonomous mechanisms, providing additional support for their combined use in HR+ breast cancer. SIGNIFICANCE: Adding SMAC mimetics to endocrine therapy enhances tumor regression in a cell autonomous manner while increasing tumor immunogenicity, indicating that this combination could be an effective treatment for HR+ patients with breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Feminino , NF-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias da Mama/patologia , Apresentação de Antígeno , Proteínas Reguladoras de Apoptose , Apoptose , Linhagem Celular Tumoral , Proteínas Mitocondriais/metabolismo , Microambiente Tumoral
2.
Bioessays ; 44(3): e2100183, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35001404

RESUMO

Hedgehog (Hh) signaling is a widely studied signaling pathway because of its critical roles during development and in cell homeostasis. Vertebrate canonical and non-canonical Hh signaling are typically assumed to be distinct and occur in different cellular compartments. While research has primarily focused on the canonical form of Hh signaling and its dependency on primary cilia - microtubule-based signaling hubs - an extensive list of crucial functions mediated by non-canonical Hh signaling has emerged. Moreover, amounting evidence indicates that canonical and non-canonical modes of Hh signaling are interlinked, and that they can overlap spatially, and in many cases interact functionally. Here, we discuss some of the many cellular effects of non-canonical signaling and discuss new evidence indicating inter-relationships with canonical signaling. We discuss how Smoothened (Smo), a key component of the Hh pathway, might coordinate such diverse downstream effects. Collectively, pursuit of questions such as those proposed here will aid in elucidating the full extent of Smo function in development and advance its use as a target for cancer therapeutics.


Assuntos
Cílios , Proteínas Hedgehog , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
3.
J Cell Biol ; 220(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33258871

RESUMO

Primary cilia function as critical signaling hubs whose absence leads to severe disorders collectively known as ciliopathies; our knowledge of ciliogenesis remains limited. We show that Smo induces ciliogenesis through two distinct yet essential noncanonical Hh pathways in several cell types, including neurons. Surprisingly, ligand activation of Smo induces autophagy via an LKB1-AMPK axis to remove the satellite pool of OFD1. This is required, but not sufficient, for ciliogenesis. Additionally, Smo activates the Gαi-LGN-NuMA-dynein axis, causing accumulation of a portion of OFD1 at centrioles in early ciliogenesis. Both pathways are critical for redistribution of BBS4 from satellites to centrioles, which is also mediated by OFD1 centriolar translocation. Notably, different Smo agonists, which activate Smo distinctly, activate one or the other of these pathways; only in combination they recapitulate the activity of Hh ligand. These studies provide new insight into physiological stimuli (Hh) that activate autophagy and promote ciliogenesis and introduce a novel role for the Gαi-LGN-NuMA-dynein complex in this process.


Assuntos
Autofagia , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Organogênese , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP , Adenilato Quinase/metabolismo , Autofagia/efeitos dos fármacos , Corpos Basais/efeitos dos fármacos , Corpos Basais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centríolos/efeitos dos fármacos , Centríolos/metabolismo , Cílios/efeitos dos fármacos , Dineínas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organogênese/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Piridinas/farmacologia , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/citologia , Soro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/agonistas , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/metabolismo
5.
Mol Biol Cell ; 28(24): 3517-3531, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28931593

RESUMO

Cytokinesis cleaves a cell into two daughters at the end of mitosis, and must be spatially coordinated with chromosome segregation to prevent aneuploidy. The dogma is that the mitotic spindle governs the assembly and constriction of an actomyosin ring. Here, we reveal a function for active Ran in spatially restricting the ring. Our model is that during anaphase, "free" importins, whose gradient inversely correlates with active Ran and chromatin position, function as a molecular ruler for the recruitment and localization of anillin, a contractile protein and a crucial regulator of cytokinesis. We found that decreasing Ran-GTP levels or tethering active Ran to the equatorial membrane affects anillin's localization and causes cytokinesis phenotypes. Anillin contains a conserved nuclear localization signal (NLS) at its C-terminus that binds to importin-ß and is required for cortical polarity and cytokinesis. Mutating the NLS decreases anillin's cortical affinity, causing it to be more dominantly regulated by microtubules. Anillin contains a RhoA-GTP binding domain, which autoinhibits the NLS and the neighboring microtubule-binding domain, and RhoA-GTP binding may relieve this inhibition during mitosis. Retention of the C-terminal NLS in anillin homologues suggests that this is a conserved mechanism for controlling anillin function.


Assuntos
Carioferinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Citocinese/fisiologia , Células HeLa , Humanos , Camundongos , Microtúbulos/metabolismo , Mitose , Sinais de Localização Nuclear/metabolismo , Fuso Acromático/metabolismo , beta Carioferinas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Curr Biol ; 26(23): 3183-3189, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28094036

RESUMO

The first cell of an animal (zygote) requires centrosomes that are assembled from paternally inherited centrioles and maternally inherited pericentriolar material (PCM) [1]. In some animals, sperm centrioles with typical ultrastructure are the origin of the first centrosomes in the zygote [2-4]. In other animals, however, sperm centrioles lose their proteins and are thought to be degenerated and non-functional during spermiogenesis [5, 6]. Here, we show that the two sperm centrioles (the giant centriole [GC] and the proximal centriole-like structure [PCL]) in Drosophila melanogaster are remodeled during spermiogenesis through protein enrichment and ultrastructure modification in parallel to previously described centrosomal reduction [7]. We found that the ultrastructure of the matured sperm (spermatozoa) centrioles is modified dramatically and that the PCL does not resemble a typical centriole. We also describe a new phenomenon of Poc1 enrichment of the atypical centrioles in the spermatozoa. Using various mutants, protein expression during spermiogenesis, and RNAi knockdown of paternal Poc1, we found that paternal Poc1 enrichment is essential for the formation of centrioles during spermiogenesis and for the formation of centrosomes after fertilization in the zygote. Altogether, these findings demonstrate that the sperm centrioles are remodeled both in their protein composition and in ultrastructure, yet they are functional and are essential for normal embryogenesis in Drosophila.


Assuntos
Centríolos/fisiologia , Drosophila melanogaster/fisiologia , Espermatogênese/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/fisiologia , Masculino , Espermatozoides/fisiologia
7.
J Biol Chem ; 290(21): 13500-9, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25829492

RESUMO

The compartmentalization of cell cycle regulators is a common mechanism to ensure the precise temporal control of key cell cycle events. For instance, many mitotic spindle assembly factors are known to be sequestered in the nucleus prior to mitotic onset. Similarly, the essential cytokinetic factor anillin, which functions at the cell membrane to promote the physical separation of daughter cells at the end of mitosis, is sequestered in the nucleus during interphase. To address the mechanism and role of anillin targeting to the nucleus in interphase, we identified the nuclear targeting motif. Here, we show that anillin is targeted to the nucleus by importin ß2 in a Ran-dependent manner through an atypical basic patch PY nuclear localization signal motif. We show that although importin ß2 binding does not regulate anillin's function in mitosis, it is required to prevent the cytosolic accumulation of anillin, which disrupts cellular architecture during interphase. The nuclear sequestration of anillin during interphase serves to restrict anillin's function at the cell membrane to mitosis and allows anillin to be rapidly available when the nuclear envelope breaks down to remodel the cellular architecture necessary for successful cell division.


Assuntos
Núcleo Celular/genética , Proteínas dos Microfilamentos/metabolismo , Mitose/fisiologia , Sinais de Localização Nuclear , beta Carioferinas/metabolismo , Membrana Celular/metabolismo , Citocinese/fisiologia , Citosol/metabolismo , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Interfase/fisiologia , Proteínas dos Microfilamentos/genética , Membrana Nuclear/metabolismo , Transporte Proteico , beta Carioferinas/genética
8.
Cytoskeleton (Hoboken) ; 71(1): 1-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24127246

RESUMO

Crosstalk between the actin cytoskeleton and microtubules promotes symmetry break to polarize cells for division, shape changes, and migration. These cellular events are crucial for forming tissues, and drive the metastasis of cancer cells. Rho GTPases mediate the formation of different types of F-actin that confer changes in cortical tension and contraction, and can be regulated by microtubules. For example, central spindle microtubules of the mitotic spindle stimulate RhoA activity to form long, unbranched F-actin that is crosslinked by nonmuscle myosin to form the contractile ring in the equatorial plane of the cell. There is greater cortical tension in this area of the cell in comparison to the poles, where the formation of short, branched F-actin is favored. In migrating cells, growing microtubules that reach into the leading edge promote Rac activation and the formation of short, branched F-actin for lamellipodia formation. A common theme that is emerging in many fields is that feedback can also occur from the cortex to alter microtubule stability. In this manner, cells can dynamically respond to intrinsic or extrinsic cues to ensure that their division plane is always coupled with the segregation of DNA and cell fate determinants, or that they migrate properly to form a tissue.


Assuntos
Citoesqueleto de Actina/metabolismo , Movimento Celular/fisiologia , Microtúbulos/metabolismo , Polaridade Celular/fisiologia , Citocinese/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...