Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 443(Pt A): 130175, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36279649

RESUMO

The successful preparation and identification of Keggin-structure Fe13 clusters in recent years further enriched the potential application scenarios of ferric coagulants. Comparing the coagulation efficiencies and mechanisms of Fe13 in the removal of nano/microplastics with conventional polymeric Al13 and monomeric Al/Fe, this work aimed to elucidate the coagulation behaviour of Fe13 compared with the traditional mono ferric coagulant, which has the coagulation applied bottleneck of quick and violet hydrolysis. The results showed that Fe13 has a similar electrostatic neutralization potential to Al13, which could keep a positively charged species, especially in acid conditions. The Fe13 species has a selective removal potential toward the microplastics with a polar functional group like ester. Moreover, Fe13 could hydrolyze to form active sol-gel hydroxides in neutral and alkalinity conditions, which is like the behaviour of traditional monomeric Fe coagulants but seldom restabilization. The electrostatic neutralization of Fe13 could enhance the removal of nano plastic from - 25-75% compared with monomeric Fe at pH 4. The higher floc density as a monomeric Fe coagulant and better electrostatic neutralization potential of Keggin Fe13 posed a good prospect for Fe13 to replace the monomeric Fe coagulants in conventional coagulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...