Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Environ Monit Assess ; 196(8): 757, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034311

RESUMO

Potentially toxic dyes are introduced mainly to rivers through industrial effluents which have a high risk to human health and aquatic life. Activated carbon (AC) from the stem of Salvadora persica was synthesised to take off toxic industrial dyes from an aqueous solution. KOH was used as the activating agent throughout the preparation process for the AC. The morphology and composition of the prepared AC were studied by various analytical methods. From the overall results, it was found that the prepared AC is highly porous and thermal stability gained around 800 ℃. At room temperature, remediation of the dyes (cationic dye, methyl red and anionic dye, methylene blue) using the adsorption method was carried out to ascertain the impact of time and the quantity of AC on methylene blue (MB) and methyl red (MR) removal. During the initial 60 min, equilibrium was attained for the optimum dye concentration (200 mg/L). The data for adsorption on the AC obtained at equilibrium were examined by the Langmuir and Freundlich isotherm models. Both the isotherms accurately predicted the data, with regression values of 0.99 for MR and 0.90 for MB, respectively. The equilibrium adsorption data was also analysed by kinetic models. The adsorption data well fitted in 2nd order kinetic model. The results of MB and MR adsorption from solutions have demonstrated that the stem of Salvadora persica is one of the cheap and more eco-friendly options for remediation of toxic dyes from aqueous solutions.


Assuntos
Carvão Vegetal , Corantes , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Corantes/química , Carvão Vegetal/química , Adsorção , Azul de Metileno/química , Salvadoraceae/química , Cinética , Caules de Planta/química , Eliminação de Resíduos Líquidos/métodos , Compostos Azo
2.
J Basic Microbiol ; : e2400129, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922954

RESUMO

Nanobiotechnology has gained significant attention due to its capacity to generate substantial benefits through the integration of microbial biotechnology and nanotechnology. Among microbial organisms, Actinomycetes, particularly the prominent genus Streptomycetes, have garnered attention for their prolific production of antibiotics. Streptomycetes have emerged as pivotal contributors to the discovery of a substantial number of antibiotics and play a dominant role in combating infectious diseases on a global scale. Despite the noteworthy progress achieved through the development and utilization of antibiotics to combat infectious pathogens, the prevalence of infectious diseases remains a prominent cause of mortality worldwide, particularly among the elderly and children. The emergence of antibiotic resistance among pathogens has diminished the efficacy of antibiotics in recent decades. Nevertheless, Streptomycetes continue to demonstrate their potential by producing bioactive metabolites for the synthesis of nanoparticles. Streptomycetes are instrumental in producing nanoparticles with diverse bioactive characteristics, including antiviral, antibacterial, antifungal, antioxidant, and antitumor properties. Biologically synthesized nanoparticles have exhibited a meaningful reduction in the impact of antibiotic resistance, providing resources for the development of new and effective drugs. This review succinctly outlines the significant applications of Streptomycetes as a crucial element in nanoparticle synthesis, showcasing their potential for diverse and enhanced beneficial applications.

3.
Int J Biol Macromol ; 268(Pt 1): 131558, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614166

RESUMO

Water contamination caused by toxic compounds has emerged as one of the most severe challenges worldwide. Biomass-based nanocomposites offer a sustainable and renewable alternative to conventional materials. In this study, a nanocomposite of mint and cellulose acetate (Mint-CA) was prepared and employed as a supportive material for Cu nanoparticles (CuNPs) and Ag nanoparticles (AgNPs). The selectivity of CuNPs@mint-CA and AgNPs@mint-CA was assessed by comparing their performance in the reduction reaction of various dyes solutions. AgNPs@mint-CA exhibited superior catalytic performance, with a removal of 95.2 % for methyl orange (MO) compared to 68 % with CuNPs@mint-CA. The absorption spectra of MO exhibited a distinct peak at 464 nm. The reduction reaction of MO by AgNPs@mint-CA followed pseudo-first-order-kinetic with a rate constant of k = 0.0063 min-1 (R2 = 0.928). The highest removal of MO was achieved under the following conditions: a catalyst weight of 40 mg, an initial MO concentration of 0.07 mM, the addition of 0.5 mL of 0.1 M NaBH4, and a temperature of 25 °C. Furthermore, the AgNPs@mint-CA catalyst exhibited exceptional reducibility even after five use cycles, highlighting its potential for efficiently removing MO.


Assuntos
Compostos Azo , Celulose , Nanopartículas Metálicas , Compostos Azo/química , Celulose/química , Celulose/análogos & derivados , Nanopartículas Metálicas/química , Catálise , Prata/química , Nanocompostos/química , Mentha/química , Oxirredução , Poluentes Químicos da Água/química , Cinética , Cobre/química
4.
Chemosphere ; 355: 141743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513958

RESUMO

Silver oxide doped iron oxide (Ag2O-Fe2O3) nanocatalyst was prepared and coated on cotton cloth (CC) as well as wrapped in sodium alginate (Alg) hydrogel. Ag2O-Fe2O3 coated CC (Ag2O-Fe2O3/CC) and Ag2O-Fe2O3 wrapped Alg (Ag2O-Fe2O3/Alg) were utilized as catalysts in reduction reaction of 4-nitrophenol (4-NP), congo red (CR), methylene blue (MB) and potassium ferricyanide (K3[Fe(CN)6]). Ag2O-Fe2O3/CC and Ag2O-Fe2O3/Alg were found to be effective and selective catalyst for the reaction of K3[Fe(CN)6]. Further amount of catalyst, K3[Fe(CN)6] quantity, amount of NaBH4, stability of catalyst and recyclability were optimized for the reaction of K3[Fe(CN)6] reduction. Ag2O-Fe2O3/Alg and Ag2O-Fe2O3/CC were appeared to be the stable catalysts by maintaining high activity during recyclability tests showing highest reaction rate constants (kapp) of 0.3472 and 0.5629 min-1, correspondingly. However, Ag2O-Fe2O3/CC can be easily recovered as compared to Ag2O-Fe2O3/Alg by simply removing from the reaction which is the main advantage of Ag2O-Fe2O3/CC. Moreover, Ag2O-Fe2O3/Alg and Ag2O-Fe2O3/CC were also examined in real samples and found useful for K3[Fe(CN)6] reduction involving real samples. The Ag2O-Fe2O3/CC nanocatalyst is a cost and time saving material for economical reduction of K3[Fe(CN)6] and environmental safety.


Assuntos
Alginatos , Compostos Férricos , Ferricianetos , Nanocompostos , Óxidos , Compostos de Prata
5.
World J Microbiol Biotechnol ; 40(3): 103, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372854

RESUMO

Certain factors hinder the commercialization of biodesulfurization process, including low substrate-specificity of the currently reported desulfurizing bacteria and restricted mass transfer of organic-sulfur compounds in biphasic systems. These obstacles must be addressed to clean organic-sulfur rich petro-fuels that pose serious environmental and health challenges. In current study, a dibenzothiophene desulfurizing strain, Gordonia rubripertincta W3S5 (source: oil contaminated soil) was systematically evaluated for its potential to remove sulfur from individual compounds and mixture of organic-sulfur compounds. Metabolic and genetic analyses confirmed that strain W3S5 desulfurized dibenzothiophene to 2-hydroxybiphenyl, suggesting that it follows the sulfur specific 4 S pathway. Furthermore, this strain demonstrated the ability to produce trehalose biosurfactants (with an EI24 of 53%) in the presence of dibenzothiophene, as confirmed by TLC and FTIR analyses. Various genome annotation tools, such as ClassicRAST, BlastKOALA, BV-BRC, and NCBI-PGAP, predicted the presence of otsA, otsB, treY, treZ, treP, and Trehalose-monomycolate lipid synthesis genes in the genomic pool of strain W3S5, confirming the existence of the OtsAB, TreYZ, and TreP pathways. Overall, these results underscore the potential of strain W3S5 as a valuable candidate for enhancing desulfurization efficiency and addressing the mass transfer challenges essential for achieving a scaled-up scenario.


Assuntos
Petróleo , Trealose , Solo , Tiofenos , Enxofre
6.
Int Microbiol ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286952

RESUMO

Direct combustion of sulfur-enriched liquid fuel oil causes sulfur oxide emission, which is one of the main contributors to air pollution. Biodesulfurization is a promising and eco-friendly method to desulfurize a wide range of thiophenic compounds present in fuel oil. Previously, numerous bacterial strains from genera such as Rhodococcus, Corynebacterium, Gordonia, Nocardia, Mycobacterium, Mycolicibacterium, Paenibacillus, Shewanella, Sphingomonas, Halothiobacillus, and Bacillus have been reported to be capable of desulfurizing model thiophenic compounds or fossil fuels. In the present study, we report a new desulfurizing bacterium, Tsukamurella sp. 3OW, capable of desulfurization of dibenzothiophene through the carbon-sulfur bond cleavage 4S pathway. The bacterium showed a high affinity for the hydrocarbon phase and broad substrate specificity towards various thiophenic compounds. The overall genome-related index analysis revealed that the bacterium is closely related to Tsukamurella paurometabola species. The genomic pool of strain 3OW contains 57 genes related to sulfur metabolism, including the key dszABC genes responsible for dibenzothiophene desulfurization. The DBT-adapted cells of the strain 3OW displayed significant resilience and viability in elevated concentrations of crude oil. The bacterium showed a 19 and 37% reduction in the total sulfur present in crude and diesel oil, respectively. Furthermore, FTIR analysis indicates that the oil's overall chemistry remained unaltered following biodesulfurization. This study implies that Tsukamurella paurometabola species, previously undocumented in the context of biodesulfurization, has good potential for application in the biodesulfurization of petroleum oils.

7.
Materials (Basel) ; 16(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959575

RESUMO

Silver oxide-doped tin oxide (SnAg2O3) nanoparticles were synthesized and different spectroscopic techniques were used to structurally identify SnAg2O3 nanoparticles. The reduction of 4-nitrophenol (4-NP), congo red (CR), methylene blue (MB), and methyl orange (MO) was studied using SnAg2O3 as a catalyst. Only 1.0 min was required to reduce 95% MO; thus, SnAg2O3 was found to be effective with a rate constant of 3.0412 min-1. Being a powder, SnAg2O3 is difficult to recover and recycle multiple times. For this reason, SnAg2O3 was coated on adhesive tape (AT) to make it recyclable for large-scale usage. SnAg2O3@AT catalyst was assessed toward MO reduction under various conditions. The amount of SnAg2O3@AT, NaBH4, and MO was optimized for best possible reduction conditions. The catalyst had a positive effect since it speed up the reduction of MO by adding more SnAg2O3@AT and NaBH4 as well as lowering the MO concentration. SnAg2O3@AT totally reduced MO (98%) in 3.0 min with a rate constant of 1.3669 min-1. These findings confirmed that SnAg2O3@AT is an effective and useful catalyst for MO reduction that can even be utilized on a large scale for industrial purposes.

8.
Int J Biol Macromol ; 247: 125708, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37414323

RESUMO

Heavy metals and dyes used in technological applications have a detrimental influence on human health and the environment. The most used methods for removing pollutants depend on high-cost materials. Therefore, this research was conducted on cost-effective alternatives derived from natural resources and food waste. Herein, we designed a composite hydrogel based on sodium alginate/coffee waste (Alg/coffee) as adsorbent for the removal of organic and inorganic pollutants from aquatic solutions. The selectivity study displayed that Alg/coffee is more effective in adsorbing Pb(II) and acridine orange dye (AO). Adsorption of Pb(II) and AO was studied at concentration range of 0-170 mgL-1 and 0-40 mgL-1. Adsorption data of Pb(II) and AO reveals their fitting to Langmuir-isotherm and pseudo-second-order-kinetic models. The findings demonstrated that Alg/coffee hydrogel are more effective than coffee powder itself with an adsorption (%) approaching 98.44 % of Pb(II) and 80.53 % of AO. Real sample analysis reveals the efficiency of Alg/coffee hydrogel beads in Pb(II) adsorption. The adsorption cycle was examined four times providing high efficiency toward Pb(II) and AO. Desorption of Pb(II) and AO was easily performed using HCl eluent. Thus, Alg/coffee hydrogel beads could be promising adsorbent for the removal of organic and inorganic pollutants.


Assuntos
Poluentes Ambientais , Metais Pesados , Eliminação de Resíduos , Poluentes Químicos da Água , Humanos , Café , Adsorção , Alginatos , Hidrogéis , Alimentos , Chumbo , Corantes , Cinética , Concentração de Íons de Hidrogênio
9.
Environ Pollut ; 327: 121524, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003583

RESUMO

Metal nanoparticles possess high catalytic activity in various organic transformation reactions. A catalyst must be recovered and re-used effectively and economically to lower the overall reaction cost. The recovery of a catalyst remains a challenge due to their extreme small size. In this research work, catalytic metal nanoparticles were synthesized on Zn-phthalocyanine (ZnPc) and chitosan hydrogel (CH) composite which acts as catalyst support. The ZnPc-CH support facilitate the easy recovery of the loaded metal nanoparticles. Metal nanoparticles (M0) based on Cu0, Ag0, Ni0, Co0 and Fe0 were decorated inside and on ZnPc-CH hydrogel surface. The developed M0@ZnPc-CH were utilized for the enhanced selective reduction of toxins and hydrogen production by methanolysis and hydrolysis of NaBH4. Effective catalytic reduction and hydrogen generation was successfully achieved with Co0@ZnPc-CH and ZnPc-CH. Under optimized conditions, Co0@ZnPc-CH showed complete reduction of 4-nitrophenol (4-NP) in 8.0 min with the fast 4-NP reduction kinetics (K = 0.611 min-1). Among the developed catalysts, ZnPc-CH showed fast H2 generation with high H2 generation rate (HGR = 4100 mLg-1min-1) under optimized conditions. Metal leaching from Co0@ZnPc-CH was negligible during recycling of the catalyst, suggesting that it could be implemented to 4-NP treatment from real water samples. Similarly, ZnPc-CH could produce same quantity of H2 throughout 4 continuous cycles of durability testing without any deactivation and leaching and ZnPc-CH showed high stability, indicating the effectiveness of the catalyst to be applied for H2 production on large scale.


Assuntos
Quitosana , Poluentes Ambientais , Nanopartículas Metálicas , Hidrogéis , Indóis , Hidrogênio
10.
Polymers (Basel) ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36987282

RESUMO

In this work, we have developed novel beads based on carboxymethyl cellulose (CMC) encapsulated copper oxide-titanium oxide (CuO-TiO2) nanocomposite (CMC/CuO-TiO2) via Al+3 cross-linking agent. The developed CMC/CuO-TiO2 beads were applied as a promising catalyst for the catalytic reduction of organic and inorganic contaminants; nitrophenols (NP), methyl orange (MO), eosin yellow (EY) and potassium hexacyanoferrate (K3[Fe(CN)6]) in the presence of reducing agent (NaBH4). CMC/CuO-TiO2 nanocatalyst beads exhibited excellent catalytic activity in the reduction of all selected pollutants (4-NP, 2-NP, 2,6-DNP, MO, EY and K3[Fe(CN)6]). Further, the catalytic activity of beads was optimized toward 4-nitrophenol with varying its concentrations and testing different concentrations of NaBH4. Beads stability, reusability, and loss in catalytic activity were investigated using the recyclability method, in which the CMC/CuO-TiO2 nanocomposite beads were tested several times for the reduction of 4-NP. As a result, the designed CMC/CuO-TiO2 nanocomposite beads are strong, stable, and their catalytic activity has been proven.

11.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982388

RESUMO

Microbial exopolysaccharides (EPSs), having great structural diversity, have gained tremendous interest for their prebiotic effects. In the present study, mice models were used to investigate if microbial dextran and inulin-type EPSs could also play role in the modulation of microbiomics and metabolomics by improving certain biochemical parameters, such as blood cholesterol and glucose levels and weight gain. Feeding the mice for 21 days on EPS-supplemented feed resulted in only 7.6 ± 0.8% weight gain in the inulin-fed mice group, while the dextran-fed group also showed a low weight gain trend as compared to the control group. Blood glucose levels of the dextran- and inulin-fed groups did not change significantly in comparison with the control where it increased by 22 ± 5%. Moreover, the dextran and inulin exerted pronounced hypocholesterolemic effects by reducing the serum cholesterol levels by 23% and 13%, respectively. The control group was found to be mainly populated with Enterococcus faecalis, Staphylococcus gallinarum, Mammaliicoccus lentus and Klebsiella aerogenes. The colonization of E. faecalis was inhibited by 59-65% while the intestinal release of Escherichia fergusonii was increased by 85-95% in the EPS-supplemented groups, respectively, along with the complete inhibition of growth of other enteropathogens. Additionally, higher populations of lactic acid bacteria were detected in the intestine of EPS-fed mice as compared to controls.


Assuntos
Microbioma Gastrointestinal , Transtornos do Metabolismo dos Lipídeos , Camundongos , Animais , Inulina/farmacologia , Dextranos/farmacologia , Camundongos Endogâmicos BALB C , Suplementos Nutricionais , Prebióticos , Aumento de Peso , Colesterol/farmacologia
12.
Int J Biol Macromol ; 233: 123564, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754261

RESUMO

In this project, lanthanum oxide doped tin oxide (SnLa2O5) nanomaterial was prepared and characterized morphologically and physiochemically by different techniques. The catalytic performance of SnLa2O5 was assessed toward catalytic reduction of 4-nitrophenol (4-NP), methyl orange (MO), congo red (CR), methylene blue (MB) and potassium ferricyanide (K3[Fe(CN)6]). SnLa2O5 was found to be efficient for K3[Fe(CN)6] in the presence of NaBH4, which reduced in only 8.0 min. SnLa2O5 was further wrapped in carboxymethyl cellulose mixed calcium alginate (CMC-Alg) hydrogel beads because the powder catalyst cannot be simply recovered from reaction media to recycle and use again. SnLa2O5 wrapped CMC-Alg (SnLa2O5/CMC-Alg) was assessed for detail analysis of K3[Fe(CN)6] reduction. The effect of NaBH4, K3[Fe(CN)6] concentration and amount of catalyst was optimized using SnLa2O5/CMC-Alg. The amount of catalyst has positive impact on catalytic reduction of K3[Fe(CN)6]. The kinetic study revealed that K3[Fe(CN)6] reduction by SnLa2O5 and SnLa2O5/CMC-Alg was fast, which completed in 8.0 and 4.0 min with rate constant of 0.4283 min-1 and 0.7461 min-1, respectively. These findings indicated that the developed SnLa2O5/CMC-Alg is best and proficient nanocatalyst for K3[Fe(CN)6] reduction. The efficiency along with cost-effective and simple treatment route of the developed nanocatalyst have prospect to compete and replace the reputable commercial catalysts.


Assuntos
Poluentes Ambientais , Nanocompostos , Carboximetilcelulose Sódica/química , Alginatos/química , Hidrogéis
13.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688789

RESUMO

This study was conducted with a perception that fructose-rich niches may inhabit novel species of lactic acid bacteria that are gaining importance as probiotics and for the production of exopolysaccharides that have applications in food and pharmaceuticals. Recently, some Lactobacillus species have been reclassified as fructophilic lactic acid bacteria due to their preference for fructose over glucose as a carbon source. These bacteria are likely to be found in fructose rich niches such as flower nectar and insects that feed on it. We explored the butterfly gut and acquired a new isolate, designated as F1, of fructophilic lactic acid bacteria, which produces a glucan-type exopolysaccharide. Whole genome sequencing and in silico analysis revealed that F1 has significantly lower average nucleotide identity and DNA-DNA hybridization values as compared to its closest Apilactobacillus neighbors in phylogenetic analysis. Therefore, we declare the isolate F1 as a novel Apilactobacillus species with the proposed name of Apilactobacillus iqraium F1. Genome mining further revealed that F1 harbors genes for exopolysaccharide synthesis and health-promoting attributes. To this end, F1 is the only Apilactobacillus species harboring three diverse α-glucan-synthesis genes that cluster with different types of dextransucrases in the dendrogram. Moreover, many nutritional marker genes, as well as genes for epithelial cell adhesion and antimicrobial synthesis, were also detected suggesting the probiotic attributes of F1. Overall analysis suggests A. iqraium sp. F1 be a potential candidate for various health beneficial and pharmaceutical applications.


Assuntos
Borboletas , Lactobacillales , Probióticos , Animais , Borboletas/genética , Borboletas/metabolismo , Filogenia , Lactobacillales/genética , Frutose/metabolismo , Probióticos/metabolismo , Glucanos/metabolismo , DNA
14.
Environ Sci Pollut Res Int ; 30(44): 99219-99230, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36045184

RESUMO

Ever-increasing human population compels the researchers to search for alternative food sources such as fish meat. For increase of fish growth and proper feed utilization, probiotics were added in rapeseed meal-based diet in current trial for proper digestion and absorption of nutrients in fish and ultimately higher growth with lower aquatic pollution. Fish gut microbiota is important for the feed utilization and absorption in body for higher growth. A 70-day study was conducted to investigate the effects of probiotics-supplemented rapeseed meal-based diet on growth performance, digestibility of nutrients, and absorption of minerals in Catla catla fingerlings with lowering water pollution level. Six test diets were prepared by using different levels of multi-strain probiotics i.e. 0, 1, 2, 3, 4 and 5 g/kg (0.0-0.5%) in rapeseed meal-based diet. At the rate of 4% of live wet weight, Catla fingerlings were fed two times a day and faeces samples from each tank were collected. According to the results, it was observed that probiotics supplementation (@2 g/kg) in rapeseed meal-based diet resulted with improvement in nutrient digestibility (CP, 72%; fat, 75% and GE, 70%), mineral absorption (Ca, 72%; Na, 76%; K, 70% and P, 70%), specific growth rate (SGR, 1.55), improved feed conversion ratio (FCR, 1.22) and weight gain percentage (WG%, 303%) of fingerlings. It was also noticed that probiotics supplementation decreased the discharge of minerals and nutrient through faeces, as compared to control diet; hence, it plays a significant role in reducing water pollution. On the basis of these results, it was concluded that probiotics inclusion at level of 2 g/kg was useful to formulate the cost effective and eco-friendly fish feed with the maximum improvement in growth and fish health by using rapeseed meal-based diet, as compared to control and other test diets.


Assuntos
Brassica napus , Brassica rapa , Cyprinidae , Probióticos , Animais , Humanos , Ração Animal/análise , Digestão , Suplementos Nutricionais , Dieta , Minerais , Fenômenos Fisiológicos da Nutrição Animal
15.
Int J Biol Macromol ; 225: 1426-1436, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436599

RESUMO

In this work, facile fabrication of lignin nanoparticles (LNP)-based three-dimensional reduced graphene oxide hydrogel (rGO@LNP) has been demonstrated as a novel strategy for environmental applications. Herein, LNP were facilely synthesized from walnut shell waste through a direct chemical route. These LNP were incorporated into the continuous porous network of rGO network to fabricate rGO@LNP hydrogel. Characterization studies were carried out using various analytical techniques viz. scanning electron microscopy, Fourier transform IR spectroscopy, X-ray diffraction and thermogravimetric analysis. The efficiency of rGO@LNP hydrogel as adsorptive platform was evaluated by employing methylene blue and Pb2+ as model pollutants, whilst the effect of various experimental parameters was ascertained for optimal performance. Furthermore, Agar well diffusion method was used to check the antibacterial activities of the hydrogel using two bacterial pathogenic strains, i.e. Klebsiella pneumoniae (gram negative) and Enterococcus faecalis (gram positive). Results showed that after the inclusion of LNP into rGO hydrogel, there was a marked improvement in pollutant's uptake ability and compared to bare LNP and rGO, the composite hydrogel showed enhanced bactericidal effect. Overall, this approach is outstanding because of the synergy of functional properties of nano-lignin and rGO due to multi-interaction sites in the resulting hydrogel. The results presented herein support the application of rGO@LNP as innovative water filter material for scavenging broad spectrum pollutants and bactericidal properties.


Assuntos
Grafite , Nanopartículas , Hidrogéis/farmacologia , Lignina/farmacologia , Nanopartículas/química , Grafite/química
17.
Environ Sci Pollut Res Int ; 30(34): 81433-81449, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36350450

RESUMO

In the current research work, local clay-alginate beads loaded with sodium dodecyl sulfate (SDS) surfactant were prepared for efficient adsorption of methylene blue (MB). FTIR, SEM-EDX, and TGA instruments were used to examine the surface functional groups, morphology, elemental analysis, and thermal stability of beads, respectively. The adsorption efficiency of native clay for MB increases from 124.78 to 247.94 mg/g when loaded in alginate and SDS in beads form. The impacts of adsorbent dosage, initial pH, contact time, initial MB concentration, and temperature were investigated and optimized. The maximum adsorption capacity of beads for MB was 1468.5 mg/g. The process followed a pseudosecond order kinetic and Freundlich adsorption isotherm model. Thermodynamic study confirmed that MB adsorption on beads is endothermic and spontaneous in nature. The beads were recycled and reused for five times. According to the findings, local clay-alginate beads impregnated with SDS proved to be a promising and efficient adsorbent for extracting MB from aqueous solution.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Argila , Alginatos , Adsorção , Termodinâmica , Cinética , Concentração de Íons de Hidrogênio
18.
Microbiol Resour Announc ; 11(9): e0072522, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35972253

RESUMO

We present the genome sequence of Streptomyces sp. strain R1, isolated from water canal sediments and possessing genes responsible for antimicrobial metabolites and plant growth promotion. The genome assembly contains 7,936,694 bp with 72.24% of guanine-cytosine content. This genome will provide basic knowledge of the genes and pathways involved in the above mechanisms.

19.
Antibiotics (Basel) ; 11(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36009926

RESUMO

Actinomycetes, most notably the genus Streptomyces, have great importance due to their role in the discovery of new natural products, especially for finding antimicrobial secondary metabolites that are useful in the medicinal science and biotechnology industries. In the current study, a genome-based evaluation of Streptomyces sp. isolate BR123 was analyzed to determine its biosynthetic potential, based on its in vitro antimicrobial activity against a broad range of microbial pathogens, including gram-positive and gram-negative bacteria and fungi. A draft genome sequence of 8.15 Mb of Streptomyces sp. isolate BR123 was attained, containing a GC content of 72.63% and 8103 protein coding genes. Many antimicrobial, antiparasitic, and anticancerous compounds were detected by the presence of multiple biosynthetic gene clusters, which was predicted by in silico analysis. A novel metabolite with a molecular mass of 1271.7773 in positive ion mode was detected through a high-performance liquid chromatography linked with mass spectrometry (HPLC-MS) analysis. In addition, another compound, meridamycin, was also identified through a HPLC-MS analysis. The current study reveals the biosynthetic potential of Streptomyces sp. isolate BR123, with respect to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis. Moreover, the comparative genome study compared the isolate BR123 with other Streptomyces strains, which may expand the knowledge concerning the mechanism involved in novel antimicrobial metabolite synthesis.

20.
Microorganisms ; 10(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35630349

RESUMO

Apilactobacillus spp. are classified as obligate fructophilic lactic acid bacteria (FLAB) that inhabit fructose-rich niches such as honeybee gut. Lactic acid bacteria are an important component of the gut microbiome and play a crucial role in maintaining gut health. In this study, a new FLAB strain HBW1, capable of producing glucan-type exopolysaccharide, was isolated from giant honeybee (Apis dorsata) gut and subjected to whole genome sequencing (WHS) to determine its health-beneficial traits. The genome size of the isolate was 1.49 Mb with a GC content of 37.2%. For species level identity, 16S rDNA sequence similarity, genome to genome distance calculator (dDDH), and average nucleotide identity (ANI) values were calculated. Phylogenetic analysis showed that the isolate HBW1 belongs to the Apilactobacillus genus. The dDDH and ANI values in comparison with closely clustered Apilactobacillus kunkeei species were 52% and 93.10%, respectively. Based on these values, we concluded that HBW1 is a novel species of Apilactobacillus, and we propose the name Apilactobacillus waqarii HBW1 for it. Further, WHS data mining of HBW1 revealed that it harbors two glucosyltransferase genes for prebiotic glucan-type exopolysaccharide synthesis. Moreover, chaperon (clp) and methionine sulfoxide reductase (msrA, msrB, and msrC) genes as well as nutritional marker genes for folic acid (folD) and riboflavin biosynthesis (rib operon), important for conferring probiotic properties, were also detected. Occurrence of these genetic traits make HBW1 an excellent candidate for application to improve gut function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...