Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 155: 112094, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32090867

RESUMO

A robust amperometric sensor was developed for the lactate detection in the extracellular matrix of cancer cells. The sensor was fabricated by separately immobilizing nicotinamide adenine dinucleotide (NAD+) onto a carboxylic acid group and lactate dehydrogenase (LDH) onto an amine group of bi-functionalized conducting polymer (poly 3-(((2,2':5',2″-terthiophen)-3'-yl)-5-aminobenzoic acid (pTTABA)) composited with N, S-doped porous carbon. Morphological features of the composite layer and sensor performance were investigated using FE-SEM, XPS, and electrochemical methods. The experimental parameters were optimized to get the best results. The calibration plot showed a linear dynamic range between 0.5 µM and 4.0 mM with the detection limit of 112 ± 0.02 nM. The proposed sensor was applied to detect lactate in a non-cancerous (Vero) and two cancer (MCF-7 and HeLa) cell lines. Among these cell lines, MCF-7 was mostly affected by the administration of lactate transport inhibitor, α-cyano-4-hydroxycinnamate (αCHC), followed by HeLa and Vero, respectively. Furthermore, the effect of αCHC concentration and treatment time on the lactate level in the cell lines were demonstrated. Finally, cytotoxicity studies were also performed to evaluate the effect of αCHC on cell viability.


Assuntos
Técnicas Biossensoriais/métodos , Ácido Láctico/análise , Nanotecnologia/métodos , Polímeros , Animais , Técnicas Biossensoriais/normas , Carbono , Linhagem Celular Tumoral , Ácidos Cumáricos/antagonistas & inibidores , Técnicas Eletroquímicas , Enzimas Imobilizadas , Humanos , L-Lactato Desidrogenase , Sondas Moleculares , Nanotecnologia/normas , Reprodutibilidade dos Testes
2.
J Pharm Biomed Anal ; 164: 93-103, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30366148

RESUMO

Lung cancer is undoubtedly one of the most serious health issues of the 21 st century. It is the second leading cause of cancer-related deaths in both men and women worldwide, accounting for about 1.5 million deaths annually. Despite advances in the treatment of lung cancer with new pharmaceutical products and technological improvements, morbidity and mortality rates remains a significant challenge for the cancer biologists and oncologists. The vast majority of lung cancer patients present with advanced-stage of pathological process that ultimately leads to poor prognosis and a five-year survival rate less than 20%. Early and accurate screening and analysis using cost-effective means are urgently needed to effectively diagnose the disease, improve the survival rate or to reduce mortality and morbidity associated with lung cancer patients. Thus, the only hope for early recognition of risk factors and timely diagnosis and treatment of lung cancer is biosensors technology. Novel biosensing based diagnostics approaches for predicting metastatic risks are likely to have significant therapeutic and clinical impact in the near future. This article systematically provides a brief overview of various biosensing platforms for identification of lung cancer disease biomarkers, with a specific focus on recent advancements in electrochemical and optical biosensors, analytical performances of different biosensors, challenges and further research opportunities for routine clinical analysis.


Assuntos
Biomarcadores Tumorais/análise , Técnicas Biossensoriais/métodos , Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Técnicas Biossensoriais/economia , Detecção Precoce de Câncer/economia , Humanos , Neoplasias Pulmonares/mortalidade , Prognóstico , Taxa de Sobrevida
3.
Biosens Bioelectron ; 116: 108-115, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29860089

RESUMO

Brain-derived neurotrophic factor (BDNF) was detected in the extracellular matrix of neuronal cells using a dual probe immunosensor (DPI), where one of them was used as a working and another bioconjugate loading probe. The working probe was fabricated by covalently immobilizing capture anti-BDNF (Cap Ab) on the gold nanoparticles (AuNPs)/conducting polymer composite layer. The bioconjugate probe was modified by drop casting a bioconjugate particles composed of conducting polymer self-assembled AuNPs, immobilized with detection anti-BDNF (Det Ab) and toluidine blue O (TBO). Each sensor layer was characterized using the surface analysis and electrochemical methods. Two modified probes were precisely faced each other to form a microfluidic channel structure and the gap between inside modified surfaces was about 19 µm. At optimized conditions, the DPI showed a linear dynamic range from 4.0 to 600.0 pg/ml with a detection limit of 1.5 ±â€¯0.012 pg/ml. Interference effect of IgG, arginine, glutamine, serine, albumin, and fibrinogene were examined and stability of the developed biosensor was also investigated. The reliability of the DPI sensor was evaluated by monitoring the extracellular release of BDNF using exogenic activators (ethanol, K+, and nicotine) in neuronal and non-neuronal cells. In addition, the effect of nicotine onto neuroblastoma cancer cells (SH-SY5Y) was studied in detail.


Assuntos
Técnicas Biossensoriais , Fator Neurotrófico Derivado do Encéfalo/análise , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Imunoensaio , Nicotina/farmacologia , Animais , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Fator Neurotrófico Derivado do Encéfalo/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Técnicas Eletroquímicas , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanocompostos/química , Neurônios/efeitos dos fármacos , Polímeros/química , Ratos , Células Vero
4.
Biosens Bioelectron ; 109: 263-271, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29571163

RESUMO

The analytical performance of the multi enzymes loaded single electrode sensor (SES) and dual electrode sensor (DES) was compared for the detection of adenosine and metabolites. The SES was fabricated by covalent binding of tri-enzymes, adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), and xanthine oxidase (XO) along with hydrazine (Hyd) onto a functionalized conducting polymer [2,2:5,2-terthiophene-3-(p-benzoic acid)] (pTTBA). The enzyme reaction electrode in DES was fabricated by covalent binding of ADA and PNP onto pTTBA coated on Au nanoparticles. The detection electrode in DES was constructed by covalent binding of XO and Hyd onto pTTBA coated on porous Au. Due to the higher amount (3.5 folds) of the immobilized enzymes and Hyd onto the DES than SES, and the lower Michaelis constant (Km) value for DES (28.7 µM) compared to SES (36.1 µM), the sensitivity was significantly enhanced for the DES (8.2 folds). The dynamic range obtained using DES was from 0.5 nM to 120.0 µM with a detection limit of 1.43 nM ±â€¯0.02, 0.76 nM ±â€¯0.02, and 0.48 nM ±â€¯0.01, for adenosine (AD), inosine (IN), and hypoxanthine (Hypo) respectively. Further, the DES was coupled with an electrochemical potential modulated microchannel for the separation and simultaneous detection of AD, IN, and Hypo in an extracellular matrix of cancerous (A549) and non-cancerous (Vero) cells. The sensor probe confirms a higher basal level of extracellular AD and its metabolites in cancer cells compared to normal cells. In addition, the effect of dipyridamole on released adenosine in A549 cells was investigated.


Assuntos
Adenosina/isolamento & purificação , Técnicas Biossensoriais , Inosina/isolamento & purificação , Neoplasias/diagnóstico , Células A549 , Adenosina/química , Adenosina Desaminase/química , Eletrodos , Humanos , Hipoxantina/química , Inosina/química , Limite de Detecção , Metabolômica/métodos , Neoplasias/metabolismo , Neoplasias/patologia , Purina-Núcleosídeo Fosforilase/química , Xantina Oxidase/química
5.
Biosens Bioelectron ; 98: 364-370, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28704785

RESUMO

A microfluidic structured-dual electrodes sensor comprising of a pair of screen printed carbon electrodes was fabricated to detect acetylcholine, where one of them was used for an enzyme reaction and another for a detection electrode. The former was coated with gold nanoparticles and the latter with a porous gold layer, followed by electropolymerization of 2, 2:5,2-terthiophene-3-(p-benzoic acid) (pTTBA) on both the electrodes. Then, acetylcholinesterase was covalently attached onto the reaction electrode, and hydrazine and choline oxidase were co-immobilized on the detection electrode. The layers of both modified electrodes were characterized employing voltammetry, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and quartz crystal microscopy. After the modifications of both electrode surfaces, they were precisely faced each other to form a microfluidic channel structure, where H2O2 produced from the sequential enzymatic reactions was reduced by hydrazine to obtain the analytical signal which was analyzed by the detection electrode. The microfluidic sensor at the optimized experimental conditions exhibited a wide dynamic range from 0.7nM to 1500µM with the detection limit of 0.6 ± 0.1nM based on 3s (S/N = 3). The biomedical application of the proposed sensor was evaluated by detecting acetylcholine in human plasma samples. Moreover, the Ca2+-induced acetylcholine released in leukemic T-cells was also investigated to show the in vitro detection ability of the designed microfluidic sensor. Interference due to the real component matrix were also studied and long term stability of the designed sensor was evaluated. The analytical performance of the designed sensor was also compared with commercially available ACh detection kit.


Assuntos
Acetilcolina/isolamento & purificação , Técnicas Biossensoriais/métodos , Leucemia de Células T/diagnóstico , Nanopartículas Metálicas/química , Acetilcolina/metabolismo , Acetilcolinesterase/química , Cálcio/química , Cálcio/metabolismo , Técnicas Eletroquímicas , Humanos , Leucemia de Células T/patologia , Limite de Detecção , Microfluídica , Linfócitos T/química , Linfócitos T/patologia
6.
Biosens Bioelectron ; 85: 488-495, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27209575

RESUMO

A robust amperometric sensor for ß-nicotinamide adenine dinucleotide (NADH) detection was developed through the organic complex formation with ethylenediaminetetraacetic acid (EDTA) bonded on the polyethylenimine (PEI)/activated graphene oxide (AGO) layer. The EDTA immobilized sensor probe (GCE/AGO/PEI-EDTA) revealed a catalytic property towards NADH oxidation that allows for the highly sensitive electrochemical detection of NADH at a low oxidation potential. Surface characterization demonstrated that the negatively charged AGO acted as nanofillers in the positively charged PEI matrix through the charge interaction. The immobilization of EDTA on the polymer layer provided more surface area for NADH to interact with through the enhanced chemical interlocking between them. We observed the strong interaction between NADH and EDTA on the AGO/PEI layer using a quartz crystal microbalance (QCM), X-ray photoelectron spectroscopy (XPS), and the calculation of the minimized energy for complex formation. The dynamic range of NADH was determined to be between 0.05µM and 500µM with a detection limit (LD) of 20.0±1.1nM. The reliability of the developed sensor for biomedical applications was examined by detecting NADH in tumorigenic lung epithelial cells using the standard addition method.


Assuntos
Técnicas Biossensoriais/métodos , Ácido Edético/química , Grafite/química , NAD/análise , NAD/sangue , Polietilenoimina/química , Linhagem Celular Tumoral , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Modelos Moleculares , Neoplasias/química , Oxirredução , Óxidos/química , Reprodutibilidade dos Testes
7.
Biosens Bioelectron ; 68: 421-428, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25617752

RESUMO

A highly sensitive amperometric sensor has been studied for selective monitoring of K(+)-induced dopamine released from dopaminergic cells (PC12) which is based on an EDTA immobilized-poly(1,5-diaminonaphthalne) (poly-DAN) layer comprising graphene oxide (GO) and gold nanoparticles (GO/AuNPs). The integration of a negatively charged probe molecule on the poly-DAN/GO/AuNPs nanohybrid attained the signal enhancement to discriminate dopamine (DA) molecules from foreign species by catalytic effect and surface charge, and hydrogen bonding-based interactions with a probe molecule. The sensor performance and morphology were investigated using voltammetry, impedance spectrometry, SEM, and XPS. Experimental variables affecting the analytical performance of the sensor probe were optimized, and linear response was observed in the range of 10 nM-1 µM with a detection limit of 5.0 nM (±0.01) for DA. Then, the sensor was applied to monitor dopamine released from PC12 cells upon extracellular stimulation of K(+) ions. It was also confirmed that K(+)-induced dopamine release was inhibited by a calcium channel inhibitor (Nifidipine). The results demonstrated that the presented biosensor could be used as an excellent tool for monitoring the effect of exogenous agents on living cells and drug efficacy tests.


Assuntos
Dopamina/metabolismo , Ácido Edético/química , Técnicas Eletroquímicas/métodos , Potássio/metabolismo , Animais , Técnicas Biossensoriais/métodos , Sobrevivência Celular , Dopamina/análise , Ouro/química , Grafite/química , Limite de Detecção , Nanopartículas Metálicas/química , Modelos Moleculares , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...