Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(48): 30985-31003, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36349013

RESUMO

Vanadium dioxide (VO2)-based energy-saving smart films or coatings aroused great interest in scientific research and industry due to the reversible crystalline structural transition of VO2 from the monoclinic to tetragonal phase around room temperature, which can induce significant changes in transmittance and reflectance in the infrared (IR) range. However, there are still some obstacles for commercial application of VO2-based films or coatings in our daily life, such as the high phase transition temperature (68 °C), low luminous transmittance, solar modulation ability, and poor environmental stability. Particularly, due to its active nature chemically, VO2 is prone to gradual oxidation, causing deterioration of optical properties during very long life span of windows. In this review, the recent progress in enhancing the thermochromic properties of VO2-hybrid materials especially based on environmental stability has been summarized for the first time in terms of structural modifications such as core-shell structures for nanoparticles and nanorods and thin-films with single layer, layer-by-layer, and sandwich-like structures due to their excellent results for improving environmental stability. Moreover, future development trends have also been presented to promote the goal of commercial production of VO2 smart coatings.

2.
Polymers (Basel) ; 13(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800734

RESUMO

A computational framework based on novel differential effective medium approximation and mean-field homogenization is used to design high-performance filler-laden polymer thermal interface materials (TIMs). The proposed design strategy has the capability to handle non-dilute filler concentration in the polymer matrix. The effective thermal conductivity of intended thermal interface composites can be tailored in a wide range by varying filler attributes such as size, aspect ratio, orientation, as well as filler-matrix interface with an upper limit imposed by the shear modulus. Serval potential polymers and fillers are considered at the design stage. High-density polyethylene (HDPE) and thermoplastic polyurethane (TPU) with a non-dilute concentration (~60 vol%) of ceramic fillers exhibit high thermal conductivity (4-5 W m-1 K-1) without compromising the high compliance of TIMs. The predicted thermal conductivity and coefficient of thermal expansion are in excellent agreement with measured data of various binary composite systems considering HDPE, TPU, and polypropylene (PP) loaded with Al2O3 and AlN fillers in varying sizes, shapes, and concentrations, prepared via the melt-mixing and compression-molding route. The model also validates that manipulating filler alignment and aspect ratio can significantly contribute to making heat-conducting networks in composites, which results in ultra-high thermal conductivity.

3.
Sci Rep ; 10(1): 5304, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210302

RESUMO

A computational design methodology is reported to propose a high-performance composite for backside encapsulation of concentrated photovoltaic (CPV) systems for enhanced module life and electrical power. Initially, potential polymer composite systems that are expected to provide the target properties, such as thermal conductivity, coefficient of thermal expansion, and long-term shear modulus are proposed using in-house built design codes. These codes are based on differential effective medium theory and mean-field homogenization, which lead to the selection of matrix, filler, volume fractions, and type of particulates. Thermoplastic polyurethane (TPU) loaded with ceramics fillers of a minimum spherical diameter of 6 µm are found potential composites. Some representative samples are synthesized through the melt-mixing and compression-molding route and characterized. The target properties including thermal conductivity, coefficient of thermal expansion, viscoelastic parameters, and long-term shear modulus are measured and used to evaluate the performance of CPV modules using previously published finite element model. The proposed composite can drag the cell temperature down by 5.8 °C when compared with neat TPU which leads to a 4.3% increase in electrical power along with a reasonable module life. It is expected that this approach will make a baseline for the effective production of polymer composites in various industrial applications.

4.
Materials (Basel) ; 12(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349742

RESUMO

Polycrystalline ceramics, such as alumina (Al2O3), are brittle and they generally wear by fracture mechanism, which limits their potential in tribological applications. In the present work, computational design tools are used to develop hybrid Al2O3 composites reinforced with best combinations of toughening and self-lubricating second-phase particles for cutting tool inserts in dry machining applications. A mean-field homogenization approach and J-integral based fracture toughness models are employed to predict the effective structural properties (such as elastic modulus and fracture toughness) and related to the intrinsic attributes of second- phase inclusions in Al2O3 matrix. Silicon carbide (SiC), boron nitride (cBN and hBN), zirconia (ZrO2), graphite, titanium dioxide (TiO2), and titanium carbide (TiC) were found the most suitable candidates to be added in Al2O3 matrix as individual or hybrid combinations. A series of samples including standalone Al2O3, single inclusion composites (Al2O3/SiC, Al2O3/cBN) and hybrid composites (Al2O3/SiC/cBN, Al2O3/SiC/TiO2 and Al2O3/SiC/graphite) are sintered by Spark Plasma Sintering (SPS) for validation purpose. Properties of the sintered composites are measured and compared with the proposed computational material design. Composition and phase transformation of the sintered samples are studied using X-Ray diffraction (XRD) and Raman spectroscopy, while their morphology is studied using Field Emission Scanning Electron Microscope (FESEM). The presented nontraditional material design approach is found to significantly reduce experimental time and cost of materials in developing toughened and anti-friction ceramic composites.

5.
Materials (Basel) ; 7(6): 4148-4181, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788670

RESUMO

Metal and ceramic matrix composites have been developed to enhance the stiffness and strength of metals and alloys, and improve the toughness of monolithic ceramics, respectively. It is possible to further improve their properties by using nanoreinforcement, which led to the development of metal and ceramic matrix nanocomposites, in which case, the dimension of the reinforcement is on the order of nanometer, typically less than 100 nm. However, in many cases, the properties measured experimentally remain far from those estimated theoretically. This is mainly due to the fact that the properties of nanocomposites depend not only on the properties of the individual constituents, i.e., the matrix and reinforcement as well as the interface between them, but also on the extent of nanoreinforcement dispersion. Therefore, obtaining a uniform dispersion of the nanoreinforcement in the matrix remains a key issue in the development of nanocomposites with the desired properties. The issue of nanoreinforcement dispersion was not fully addressed in review papers dedicated to processing, characterization, and properties of inorganic nanocomposites. In addition, characterization of nanoparticles dispersion, reported in literature, remains largely qualitative. The objective of this review is to provide a comprehensive description of characterization techniques used to evaluate the extent of nanoreinforcement dispersion in inorganic nanocomposites and critically review published work. Moreover, methodologies and techniques used to characterize reinforcement dispersion in conventional composites, which may be used for quantitative characterization of nanoreinforcement dispersion in nanocomposites, is also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...