Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gigascience ; 8(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715311

RESUMO

BACKGROUND: Whole-genome shotgun resequencing of wheat is expensive because of its large, repetitive genome. Moreover, sequence data can fail to map uniquely to the reference genome, making it difficult to unambiguously assign variation. Resequencing using target capture enables sequencing of large numbers of individuals at high coverage to reliably identify variants associated with important agronomic traits. Previous studies have implemented complementary DNA/exon or gene-based probe sets in which the promoter and intron sequence is largely missing alongside newly characterized genes from the recent improved reference sequences. RESULTS: We present and validate 2 gold standard capture probe sets for hexaploid bread wheat, a gene and a putative promoter capture, which are designed using recently developed genome sequence and annotation resources. The captures can be combined or used independently. We demonstrate that the capture probe sets effectively enrich the high-confidence genes and putative promoter regions that were identified in the genome alongside a large proportion of the low-confidence genes and associated promoters. Finally, we demonstrate successful sample multiplexing that allows generation of adequate sequence coverage for single-nucleotide polymorphism calling while significantly reducing cost per sample for gene and putative promoter capture. CONCLUSIONS: We show that a capture design employing an "island strategy" can enable analysis of the large gene/putative promoter space of wheat with only 2 × 160 Mbp probe sets. Furthermore, these assays extend the regions of the wheat genome that are amenable to analyses beyond its exome, providing tools for detailed characterization of these regulatory regions in large populations.


Assuntos
Genes de Plantas , Genoma de Planta , Genômica , Regiões Promotoras Genéticas , Triticum/genética , Biologia Computacional/métodos , Exoma , Biblioteca Genômica , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
2.
Mol Biol Evol ; 23(7): 1386-96, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16675504

RESUMO

All forms of domesticated tetraploid wheat (Triticum turgidum, genomes AABB) are nearly monomorphic for restriction fragment length polymorphism (RFLP) haplotype a at the Xpsr920 locus on chromosome 4A (Xpsr920-A1a), and wild tetraploid wheat is monomorphic for haplotype b. The Xpsr920-A1a/b dimorphism provides a molecular marker for domesticated and wild tetraploid wheat, respectively. Hexaploid wheat (Triticum aestivum, genomes AABBDD) is polymorphic for the 2 haplotypes. Bacterial artificial chromosome (BAC) clones hybridizing with PSR920 were isolated from Triticum urartu (genomes AA), Triticum monococcum (genomes AmAm), and T. turgidum ssp. durum (genomes AABB) and sequenced. PSR920 is a fragment of a putative ATP binding cassette (ABC) transporter gene (designated ABCT-1). The wheat ABCT-1 gene is more similar to the T. urartu gene than to the T. monococcum gene and diverged from the T. urartu gene about 0.7 MYA. The comparison of the sequence of the wheat A genome BAC clone with that of the T. urartu BAC clone provides the first insight into the microsynteny of the wheat A genome with that of T. urartu. Within 103 kb of orthologous intergenic space, 37 kb of new DNA has been inserted and 36 kb deleted leaving 49.7% of the region syntenic between the clones. The nucleotide substitution rate in the syntenic intergenic space has been 1.6 x 10(-8) nt(-1) year(-1), which is, respectively, 4 and 3 times as great as nucleotide substitution rates in the introns and the third codon positions of the juxtaposed gene. The RFLP is caused by a miniature inverted transposable element (MITE) insertion into intron 18 of the ABCT-A1 gene. Polymerase chain reaction primers were developed for the amplification of the MITE insertion site and its sequencing. The T. aestivum ABCT-A1a haplotype is identical to the haplotype of domesticated tetraploid wheat, and the ABCT-A1b haplotype is identical to that of wild tetraploid wheat. This finding shows for the first time that wild tetraploid wheat participated in the evolution of hexaploid wheat. A cline of the 2 haplotype frequencies exists across Euro-Asia in T. aestivum. It is suggested that T. aestivum in eastern Asia conserved the gene pool of the original T. aestivum more than wheat elsewhere.


Assuntos
Fluxo Gênico/genética , Marcadores Genéticos/genética , Poliploidia , Triticum/genética , Cromossomos de Plantas/genética , DNA de Plantas/análise , DNA de Plantas/genética , Evolução Molecular , Genes de Plantas/genética , Genoma de Planta/genética , Haplótipos , Modelos Genéticos , Mutação , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Triticum/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...