Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 76(11): 3475-85, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20382809

RESUMO

This study focuses on the function of the gene praR that encodes a putative transcription factor in Azorhizobium caulinodans ORS571, a microsymbiont of Sesbania rostrata. The praR gene is a homolog of the phrR gene of Sinorhizobium medicae WSM419, and the praR and phrR homologs are distributed throughout the class Alphaproteobacteria. The growth and nitrogen fixation activity of an A. caulinodans praR deletion mutant in the free-living state were not significantly different from those of the wild-type strain. However, the stem nodules formed by the praR mutant showed lower nitrogen fixation activity than the wild-type stem nodules. Microscopy revealed that infected host cells with an oval or elongated shape were observed at early stages in the nodules formed by the praR mutant, but these infected cells gradually fell into two types. One maintained an oval or elongated shape, but the vacuoles in these cells gradually enlarged and the bacteria gradually disappeared. The other cells were shrunken with bacteria remaining inside. Microarrays revealed that genes homologous to the reb genes of Caedibacter taeniospiralis were highly expressed in the praR mutant. Furthermore, the stem nodules formed by an A. caulinodans mutant with a deletion of praR and reb-homologous genes showed high nitrogen fixation activity, comparable to that of the wild-type stem nodules, and were filled with oval or elongated host cells. These results suggest that PraR controls the expression of the reb-homologous genes and that high expression of reb-homologous genes causes aberrance in A. caulinodans-S. rostrata symbiosis.


Assuntos
Azorhizobium caulinodans/fisiologia , Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Sesbania/microbiologia , Simbiose , Fatores de Transcrição/fisiologia , Azorhizobium caulinodans/genética , Proteínas de Bactérias/genética , Deleção de Genes , Perfilação da Expressão Gênica , Microscopia , Fixação de Nitrogênio , Raízes de Plantas/citologia , Raízes de Plantas/microbiologia , Homologia de Sequência de Aminoácidos , Sesbania/citologia , Fatores de Transcrição/genética
2.
Appl Environ Microbiol ; 75(15): 5037-46, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19542345

RESUMO

The whole-genome sequence of the endosymbiotic bacterium Azorhizobium caulinodans ORS571, which forms nitrogen-fixing nodules on the stems and roots of Sesbania rostrata, was recently determined. The sizes of the genome and symbiosis island are 5.4 Mb and 86.7 kb, respectively, and these sizes are the smallest among the sequenced rhizobia. In the present study, a whole-genome microarray of A. caulinodans was constructed, and transcriptomic analyses were performed on free-living cells grown in rich and minimal media and in bacteroids isolated from stem nodules. Transcriptional profiling showed that the genes involved in sulfur uptake and metabolism, acetone metabolism, and the biosynthesis of exopolysaccharide were highly expressed in bacteroids compared to the expression levels in free-living cells. Some mutants having Tn5 transposons within these genes with increased expression were obtained as nodule-deficient mutants in our previous study. A transcriptomic analysis was also performed on free-living cells grown in minimal medium supplemented with a flavonoid, naringenin, which is one of the most efficient inducers of A. caulinodans nod genes. Only 18 genes exhibited increased expression by the addition of naringenin, suggesting that the regulatory mechanism responding to the flavonoid could be simple in A. caulinodans. The combination of our genome-wide transcriptional profiling and our previous genome-wide mutagenesis study has revealed new aspects of nodule formation and maintenance.


Assuntos
Azorhizobium caulinodans/fisiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Simbiose , Azorhizobium caulinodans/crescimento & desenvolvimento , Flavanonas/metabolismo , Redes e Vias Metabólicas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Sesbania/microbiologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...