Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894190

RESUMO

Next-generation sequencing technologies have revolutionized the field of virology by enabling the reading of complete viral genomes, extensive metagenomic studies, and the identification of novel viral pathogens. Although metagenomic sequencing has the advantage of not requiring specific probes or primers, it faces significant challenges in analyzing data and identifying novel viruses. Traditional bioinformatics tools for sequence identification mainly depend on homology-based strategies, which may not allow the detection of a virus significantly different from known variants due to the extensive genetic diversity and rapid evolution of viruses. In this work, we performed metagenomic analysis of bat feces from different Russian cities and identified a wide range of viral pathogens. We then selected sequences with minimal homology to a known picornavirus and used "Switching Mechanism at the 5' end of RNA Template" technology to obtain a longer genome fragment, allowing for more reliable identification. This study emphasizes the importance of integrating advanced computational methods with experimental strategies for identifying unknown viruses to better understand the viral universe.

2.
Epigenomes ; 7(3)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37606452

RESUMO

Genetic factors in the HIV-background may play a significant role in the susceptibility to secondary diseases, like tuberculosis, which is the leading cause in mortality of HIV-positive people. Toll-like receptors (TLRs) are considered to be receptors for adaptive immunity, and polymorphisms in TLR genes can influence the activity of the immune response to infection. We conducted a case-control study of the association of TLR gene polymorphisms with the risk of tuberculosis coinfection in a multi-country sample of HIV-positive participants. Our study revealed certain associations between TLR4 and TLR6 polymorphisms and HIV-tuberculosis coinfection. We also found that the analyzed TLR1 and TLR4 polymorphisms were linked with the decline in CD4+ cell count, which is a predictor of disease progression in HIV-infected individuals. Our findings confirm that TLR gene polymorphisms are factors that may contribute to development of HIV-tuberculosis coinfection. However, the essence of the observed associations remains unclear, since it can also include both environmental factors and epigenetic mechanisms of gene expression regulation.

3.
Genes (Basel) ; 14(6)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37372398

RESUMO

The Omicron strain is currently the main dominant variant of SARS-CoV-2, with a large number of sublineages. In this article, we present our experience in tracing it in Russia using molecular diagnostic methods. For this purpose, different approaches were used; for example, we developed multiprimer panels for RT-PCR and Sanger and NGS sequencing methods. For the centralized collection and analysis of samples, the VGARus database was developed, which currently includes more than 300,000 viral sequences.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Bases de Dados Factuais , Teste para COVID-19
4.
PLoS Negl Trop Dis ; 17(4): e0011279, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099617

RESUMO

In 2021, a patient died from Marburg virus (MARV) disease in Guinea and it was the first confirmed case in West Africa. The origin of the outbreak has not been identified. It was revealed that the patient didn't travel anywhere before the illness. Prior to outbreak, MARV had been found in bats in the neighboring Sierra Leone, but never in Guinea. Therefore, the origin of infection is unclear: was it an autochthonous case with spillover from a local population of bats or an imported case with spillover from fruit bats foraging/migrating from Sierra Leone? In this paper, we studied Rousettus aegyptiacus in Guinea as the possible source of MARV infection caused the patient death in 2021 in Guinea. We caught bats in 32 sites of Guéckédou prefecture, including seven caves and 25 locations of the flight path. A total of 501 fruit bats (Pteropodidae) were captured, including 66 R. aegyptiacus. The PCR screening showed three positive MARV R. aegyptiacus, roosting in two caves discovered in Guéckédou prefecture. After Sanger sequencing and phylogenetic analyses it was shown that found MARV belongs to the Angola-like lineage but it is not identical to the isolate obtained during the outbreak of 2021.


Assuntos
Quirópteros , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Guiné/epidemiologia , Marburgvirus/genética , Filogenia , Egito , Doença do Vírus de Marburg/epidemiologia , Surtos de Doenças
5.
Viruses ; 14(9)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36146662

RESUMO

Significant efforts are being made in many countries around the world to respond to the COVID-19 pandemic by developing diagnostic reagent kits, identifying infected people, determining treatment methods, and finally producing effective vaccines. However, novel coronavirus variants may potentially reduce the effectiveness of all these efforts, demonstrating increased transmissibility and abated response to therapy or vaccines, as well as the possibility of false negative results in diagnostic procedures based on nucleic acid amplification methods. Since the end of 2020, several variants of concern have been discovered around the world. When information about a new, potentially more dangerous strain of pathogen appears, it is crucial to determine the moment of its emergence in a region. Eventually, that permits taking timely measures and minimizing new risks associated with the spreading of the virus. Therefore, numerous nations have made tremendous efforts to identify and trace these virus variants, which necessitates serious technological processes to sequence a large number of viral genomes. Here, we report on our experience as one of the primary laboratories involved in monitoring SARS-CoV-2 variants in Russia. We discuss the various approaches used, describe effective protocols, and outline a potential technique combining several methods to increase the ability to trace genetic variants while minimizing financial and labor costs.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Vacinas contra COVID-19 , Humanos , Pandemias/prevenção & controle , Kit de Reagentes para Diagnóstico , SARS-CoV-2/genética
6.
Diagnostics (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36611413

RESUMO

BACKGROUND: The progression of infectious diseases depends on the characteristics of a patient's innate immunity, and the efficiency of an immune system depends on the patient's genetic factors, including SNPs in the TLR genes. In this pilot study, we determined the frequency of alleles in these SNPs in a subset of patients with pneumonia. METHODS: This study assessed six SNPs from TLR genes: rs5743551 (TLR1), rs5743708, rs3804100 (TLR2), rs4986790 (TLR4), rs5743810 (TLR6), and rs3764880 (TLR8). Three groups of patients participated in this study: patients with pneumonia in 2019 (76 samples), patients with pneumonia caused by SARS-CoV-2 in 2021 (85 samples), and the control group (99 samples). RESULTS: The allele and genotype frequencies obtained for each group were examined using four genetic models. Significant results were obtained when comparing the samples obtained from individuals with pneumonia before the spread of SARS-CoV-2 and from the controls for rs5743551 (TLR1) and rs3764880 (TLR8). Additionally, the comparison of COVID-19-related pneumonia cases and the control group revealed a significant result for rs3804100-G (TLR2). CONCLUSIONS: Determining SNP allele frequencies and searching for their associations with the course of pneumonia are important for personalized patient management. However, our results need to be comprehensively assessed in consideration of other clinical parameters.

7.
Viruses ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34696436

RESUMO

According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.


Assuntos
Alphacoronavirus/isolamento & purificação , Betacoronavirus/isolamento & purificação , Quirópteros/virologia , Genoma Viral/genética , Metagenoma/genética , Alphacoronavirus/classificação , Alphacoronavirus/genética , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Quirópteros/genética , Biologia Computacional/métodos , Fezes/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Moscou , Phycodnaviridae/classificação , Phycodnaviridae/genética , Phycodnaviridae/isolamento & purificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...