Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 10(5): e01003, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36101495

RESUMO

α2-adrenoceptors, (α2A, α2B and α2C-subtypes), are Gi-coupled receptors. Central activation of brain α2A and α2C-adrenoceptors is the main site for α2-agonist mediated clinical responses in hypertension, ADHD, muscle spasm and ITU management of sedation, reduction in opiate requirements, nausea and delirium. However, despite having the same Gi-potency in functional assays, some α2-agonists also stimulate Gs-responses whilst others do not. This was investigated. Agonist responses to 49 different α-agonists were studied (CRE-gene transcription, cAMP, ERK1/2-phosphorylation and binding affinity) in CHO cells stably expressing the human α2A, α2B or α2C-adrenoceptor, enabling ligand intrinsic efficacy to be determined (binding KD /Gi-IC50 ). Ligands with high intrinsic efficacy (e.g., brimonidine and moxonidine at α2A) stimulated biphasic (Gi-Gs) concentration responses, however for ligands with low intrinsic efficacy (e.g., naphazoline), responses were monophasic (Gi-only). ERK1/2-phosphorylation responses appeared to be Gi-mediated. For Gs-mediated responses to be observed, both a system with high receptor reserve and high agonist intrinsic efficacy were required. From the Gi-mediated efficacy ratio, the degree of Gs-coupling could be predicted. The clinical relevance and precise receptor conformational changes that occur, given the structural diversity of compounds with high intrinsic efficacy, remains to be determined. Comparison with α1 and ß1/ß2-adrenoceptors demonstrated subclass affinity selectivity for some compounds (e.g., α2:dexmedetomidine, α1:A61603) whilst e.g., oxymetazoline had high affinity for both α2A and α1A-subtypes, compared to all others. Some compounds had subclass selectivity due to selective intrinsic efficacy (e.g., α2:brimonidine, α1:methoxamine/etilefrine). A detailed knowledge of these agonist characteristics is vital for improving computer-based deep-learning and drug design.


Assuntos
Ligantes , Animais , Tartarato de Brimonidina , Células CHO , Cricetinae , Cricetulus , Humanos
2.
Pharmacol Res Perspect ; 10(2): e00936, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224877

RESUMO

α2-Adrenoceptors, subdivided into α2A, α2B, and α2C subtypes and expressed in heart, blood vessels, kidney, platelets and brain, are important for blood pressure, sedation, analgesia, and platelet aggregation. Brain α2C-adrenoceptor blockade has also been suggested to be beneficial for antipsychotic action. However, comparing α2-adrenoceptor subtype affinity is difficult due to significant species and methodology differences in published studies. Here, 3 H-rauwolscine whole cell binding was used to determine the affinity and selectivity of 99 α-antagonists (including antidepressants and antipsychotics) in CHO cells expressing human α2A, α2B, or α2C-adrenoceptors, using an identical method to ß and α1-adrenoceptor measurements, thus allowing direct human receptor comparisons. Yohimbine, RX821002, RS79948, and atipamezole are high affinity non-selective α2-antagonists. BRL44408 was the most α2A-selective antagonist, although its α1A-affinity (81 nM) is only 9-fold greater than its α2C-affinity. MK-912 is the highest-affinity, most α2C-selective antagonist (0.15 nM α2C-affinity) although its α2C-selectivity is only 13-fold greater than at α2A. There are no truely α2B-selective antagonists. A few α-ligands with significant ß-affinity were detected, for example, naftopidil where its clinical α1A-affinity is only 3-fold greater than off-target ß2-affinity. Antidepressants (except mirtazapine) and first-generation antipsychotics have higher α1A than α2-adrenoceptor affinity but poor ß-affinity. Second-generation antipsychotics varied widely in their α2-adrenoceptor affinity. Risperidone (9 nM) and paliperidone (14 nM) have the highest α2C-adrenoceptor affinity however this is only 5-fold selective over α2A, and both have a higher affinity for α1A (2 nM and 4 nM, respectively). So, despite a century of yohimbine use, and decades of α2-subtype studies, there remains plenty of scope to develop α2-subtype selective antagonists.


Assuntos
Antipsicóticos , Animais , Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Cricetinae , Cricetulus , Humanos , Receptores Adrenérgicos alfa 1/metabolismo , Ioimbina/metabolismo , Ioimbina/farmacologia
3.
Br J Pharmacol ; 176(14): 2343-2357, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30740663

RESUMO

α1 -Adrenoceptors are seven transmembrane domain GPCRs involved in numerous physiological functions controlled by the endogenous catecholamines, noradrenaline and adrenaline, and targeted by drugs useful in therapeutics. Three separate genes, whose products are named α1A -, α1B -, and α1D - adrenoceptors, encode these receptors. Although the existence of multiple α1 -adrenoceptors has been acknowledged for almost 25 years, the specific functions regulated by each subtype are still largely unknown. Despite the limited comprehension, the identification of a single class of subtype-selective ligands for the α1A - adrenoceptors, the so-called α-blockers for prostate dysfunction, has led to major improvement in therapeutics, demonstrating the need for continued efforts in the field. This review article surveys the tissue distribution of the three α1 -adrenoceptor subtypes in the cardiovascular system, genitourinary system, and CNS, highlighting the functions already identified as mediated by the predominant activation of specific subtypes. In addition, this review covers the recent advances in the understanding of the molecular mechanisms involved in the regulation of each of the α1 -adrenoceptor subtypes by phosphorylation and interaction with proteins involved in their desensitization and internalization. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.


Assuntos
Receptores Adrenérgicos alfa 1/metabolismo , Animais , Humanos
4.
Am J Physiol Heart Circ Physiol ; 313(1): H149-H163, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526706

RESUMO

G protein-coupled receptor kinase isoform 2 (GRK2) has a critical role in physiological and pharmacological responses to endogenous and exogenous substances. Sepsis causes an important cardiovascular dysfunction in which nitric oxide (NO) has a relevant role. The present study aimed to assess the putative effect of inducible NO synthase (NOS2)-derived NO on the activity of GRK2 in the context of septic cardiac dysfunction. C57BL/6 mice were submitted to severe septic injury by cecal ligation and puncture (CLP). Heart function was assessed by isolated and perfused heart, echocardiography, and ß-adrenergic receptor binding. GRK2 was determined by immunofluorescence and Western blot analysis in the heart and isolated cardiac myocytes. Sepsis increased NOS2 expression in the heart, increased plasma nitrite + nitrate levels, and reduced isoproterenol-induced isolated ventricle contraction, whole heart tension development, and ß-adrenergic receptor density. Treatment with 1400W or with GRK2 inhibitor prevented CLP-induced cardiac hyporesponsiveness 12 and 24 h after CLP. Increased labeling of total and phosphorylated GRK2 was detected in hearts after CLP. With treatment of 1400W or in hearts taken from septic NOS2 knockout mice, the activation of GRK2 was reduced. 1400W or GRK2 inhibitor reduced mortality, improved echocardiographic cardiac parameters, and prevented organ damage. Therefore, during sepsis, NOS2-derived NO increases GRK2, which leads to a reduction in ß-adrenergic receptor density, contributing to the heart dysfunction. Isolated cardiac myocyte data indicate that NO acts through the soluble guanylyl cyclase/cGMP/PKG pathway. GRK2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction.NEW & NOTEWORTHY The main novelty presented here is to show that septic shock induces cardiac hyporesponsiveness to isoproterenol by a mechanism dependent on nitric oxide and mediated by G protein-coupled receptor kinase isoform 2. Therefore, G protein-coupled receptor kinase isoform 2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Sepse/metabolismo , Animais , Ativação Enzimática , Feminino , Quinase 2 de Receptor Acoplado a Proteína G/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Sepse/complicações , Transdução de Sinais
5.
Mol Pharmacol ; 83(4): 870-81, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23364786

RESUMO

Loss of response on repetitive drug exposure (i.e., tachyphylaxis) is a particular problem for the vasoconstrictor effects of medications containing oxymetazoline (OXY), an α1-adrenoceptor (AR) agonist of the imidazoline class. One cause of tachyphylaxis is receptor desensitization, usually accompanied by phosphorylation and internalization. It is well established that α1A-ARs are less phosphorylated, desensitized, and internalized on exposure to the phenethylamines norepinephrine (NE), epinephrine, or phenylephrine (PE) than are the α1B and α1D subtypes. However, here we show in human embryonic kidney-293 cells that the low-efficacy agonist OXY induces G protein-coupled receptor kinase 2-dependent α1A-AR phosphorylation, followed by rapid desensitization and internalization (∼40% internalization after 5 minutes of stimulation), whereas phosphorylation of α1A-ARs exposed to NE depends to a large extent on protein kinase C activity and is not followed by desensitization, and the receptors undergo delayed internalization (∼35% after 60 minutes of stimulation). Native α1A-ARs from rat tail artery and vas deferens are also desensitized by OXY, but not by NE or PE, indicating that this property of OXY is not limited to recombinant receptors expressed in cell systems. The results of the present study are clearly indicative of agonist-directed α1A-AR regulation. OXY shows functional selectivity relative to NE and PE at α1A-ARs, leading to significant receptor desensitization and internalization, which is important in view of the therapeutic vasoconstrictor effects of this drug and the varied biologic process regulated by α1A-ARs.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/metabolismo , Norepinefrina/metabolismo , Oximetazolina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Células HEK293 , Humanos , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Norepinefrina/farmacologia , Oximetazolina/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Wistar
6.
Naunyn Schmiedebergs Arch Pharmacol ; 376(1-2): 117-26, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17676312

RESUMO

It has been recently shown that the supersensitivity of distal segments of the rat tail artery to phenylephrine after chemical sympathectomy with reserpine results from the appearance of alpha(1D)-adrenoceptors. It is known that both alpha(1A)- and alpha(1D)-adrenoceptors are involved in the contractions of proximal portions of the rat tail artery. Therefore, this study investigated whether sympathectomy with reserpine would induce supersensitivity in proximal segments of the rat tail artery, a tissue in which alpha(1D)-adrenoceptors are already functional. Proximal segments of tail arteries from reserpinised rats were three- to sixfold more sensitive to phenylephrine and methoxamine than were arteries from control rats (n = 6-2; p < 0.05). The imidazolines N-[5-(4,5-Dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide hydrobromide (A-61603) and oxymetazoline, which activate selectively alpha(1A)-adrenoceptors, were equipotent in tail arteries from control and reserpinised rats (n = 4-2; p < 0.05), whereas buspirone, which activates selectively alpha(1D)-adrenoceptor, was approximately 4-fold more potent in tail arteries from reserpinised rats (n = 4-6; p < 0.05). Prazosin (nonselective) and 5-methylurapidil (alpha(1A)-selective), were competitive antagonists of contractions induced by phenylephrine and were equipotent in tail arteries from control and reserpinised rats (n = 4-6). The selective alpha(1D)-adrenoceptor antagonist 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione dihydrochloride (BMY-7378) presented similar complex antagonism in tail arteries from control and reserpinised rats, with Schild slopes much lower than 1.0 (p < 0.05, n = 4-6). Semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) revealed that mRNA encoding alpha(1A)-and alpha(1B)-adrenoceptors are similarly distributed in tail arteries from control and reserpinised rats, whereas mRNA for alpha(1D)-adrenoceptors is twice more abundant in the tail artery from reserpinised rats. In conclusion, the supersensitivity induced by reserpine is related only to alpha(1D)-adrenoceptors, even in tissues where this receptor subtype is already present and functional. Only the use of subtype-selective alpha(1)-adrenoceptor agonists detected the increased alpha(1D)-adrenoceptor component after reserpinisation, as the antagonists behaved similarly in tail arteries from control and reserpinised rats.


Assuntos
Artérias/inervação , Músculo Liso Vascular/fisiologia , Receptores Adrenérgicos alfa 1/biossíntese , Cauda/irrigação sanguínea , Agonistas de Receptores Adrenérgicos alfa 1 , Antagonistas de Receptores Adrenérgicos alfa 1 , Animais , Artérias/efeitos dos fármacos , Artérias/metabolismo , Buspirona/farmacologia , Expressão Gênica , Imidazóis/farmacologia , Técnicas In Vitro , Masculino , Metoxamina/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Oximetazolina/farmacologia , Fenilefrina/farmacologia , Piperazinas/farmacologia , Prazosina/farmacologia , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Reserpina/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simpatectomia , Tetra-Hidronaftalenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA