Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36851067

RESUMO

Heavy metal toxicity is a major threat to the health of both humans and ecosystems. Toxic levels of heavy metals in food crops, such as grapes, can have devastating effects on plant health and the market value of the produce. Two important factors that may influence the prevalence of heavy metals in grapevines are seasonal change and farming practices. The objectives of this study were (i) to conduct a detailed pioneer screening of heavy metal levels in soils and grapevine leaf tissues in selected wine farms and (ii) to study the influence of season and farming on heavy metal levels in soils and grapevine leaf tissues. Soil and grapevine leaf samples were collected from demarcated areas in selected vineyards in the Cape Winelands region of South Africa. The sampling was conducted in winter and summer from the same sites. The soil and leaf samples were analysed using inductively coupled plasma mass spectrometry (ICP-MS) techniques. The pooled data from the farms practising conventional or organic farming showed that seasonal variation had no significant effect (DF = 1, 22; p > 0.05) on the heavy metal contents in the soil. When the soil data from the winter and summer months were compared separately or pooled, the influence of agricultural practice was well-pronounced in As (DF = 1, 22, or 46; p < 0.05) and Cu (DF = 1, 22, or 46; p <0.05). The agricultural practice greatly influenced (DF = 1, 22; p< 0.05) Cu, As, Cr, and Hg uptake, with little effect on Ni, Co, Cd, and Hg leaf contents. Generally, the heavy metals studied (Cr, Co, Ni, Zn, As, Cd, Hg, and Pb) were substantially below the maximum permitted levels in plant and soil samples, per the recommendations of the WHO and Er indices, respectively. However, moderate contamination of the soils was recorded for Cr, Ni, Zn, and Pb. Remarkably, the Cu levels in the organic vineyard soils were significantly higher than in the conventional vineyards. Furthermore, based on the Igeo index, Cu occurred at moderate to heavy contamination levels.

2.
Polymers (Basel) ; 14(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808687

RESUMO

The rapid growth in the production and application of plastic globally has resulted in plastic pollution with a negative impact on the environment, especially the marine ecosystem. One main disadvantage in the majority of polymers is disposal after a useful life span. Non-degradable polymers create severe difficulty in plastic waste management that might end up in landfills or wash into the ocean. The biodegradation of plastic waste is one solution to this critical problem of pollution. Hence, there is a need to consider the advancement of research in this subject area, in pursuit of a way out of plastic pollution. Thus, this study was designed to map the biodegradation of plastic-related research from 2000 to 2021. Statistical information on the topic was recovered from the Web of Science Core Collection and analysed using the bibliometrix package in RStudio statistical software, while data visualisation was conducted via VOSviewer. Our evaluation indicated that the amount of research on the biodegradation of plastic increased over the last decade, and the annual growth rate of publication trends was 11.84%. The study revealed that 1131 authors wrote the 290 analysed documents, with a collaboration index of 4.04. Cooper DG (n = 11) was the most relevant author, McGill University (n = 21) was the most active university, and the Journal of Polymers and the Environment (n = 19) the leading journal. The outcome of this study can guide prospective research and offer vital information for improving the management of plastic waste.

3.
Environ Technol ; 42(25): 3955-3962, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32419642

RESUMO

This study investigated the effect of carbon sources (n = 2) on the performance of a microbial community in an anaerobic moving-bed biofilm reactor (MBBR) treating acid mine drainage (AMD). The 1.5 L anaerobic MBBR was operated across a range of hydraulic retention times - HRT's (3-18 days), using different substrates, i.e. brewing wastewater and lactate as sole carbon sources and electron donors. Maximum sulphate reduction and chemical oxygen demand (COD) consumption rate was 21.94 and 24.28 mg SO42- L-1 h-1, and 0.473 and 0.697 mg COD L-1 d-1 for brewing wastewater and lactate supplemented bioreactors, respectively, at an HRT of 3 days. The maximum COD/SO42- ratio was found to be 2.564 in the bioreactor supplemented with brewing wastewater at an HRT of 15 days. The metal removal above 70% in the system supplemented with brewing wastewater followed the order; Be2+ > Fe2+ > Sr2+ > Pb2+ > Mg2+ > Cu2+ > Zn2+ > Li1+ > Ca2+ in comparison to the system supplemented with lactate, Be2+ > Fe2+ > Sr2+ > Mg2+ > Cu2+ > Li1+ > Zn2+ > Pb2+ after an HRT of 18 days. Complete removal of beryllium (II) was observed irrespective of the carbon source used. The results clearly showed that brewing wastewater can be deployed as a nutritional supplement in environmental remediation of AMD.


Assuntos
Microbiota , Águas Residuárias , Anaerobiose , Biofilmes , Reatores Biológicos , Carbono , Ácido Láctico , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...