Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 110(2): 346-355, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38167625

RESUMO

Access to potable water is difficult for many African residents. This study evaluated the bacteriological quality of household water collected in the dry and wet seasons across five municipal local government areas (LGAs) in Ibadan, a large city in southwest Nigeria. A total of 447 water samples (dry season, n = 250; wet season, n = 197) were aseptically collected from a random sample of mapped households within Ibadan's five municipal LGAs. The pH values and total aerobic and coliform bacterial counts were measured, and samples were screened for Escherichia coli, Salmonella, Shigella, and Yersinia by standard phenotypic techniques and multiplex polymerase chain reaction. The most common source of water was well (53.2%), followed by borehole (34%). None of the households used municipal tap water. Cumulatively, aerobic (P = 0.0002) and coliform (P = 0.0001) counts as well as pH values (P = 0.0002) changed significantly between seasons, with increasing and decreasing counts depending on the LGA. Nonpotable water samples were found to be very common during the dry (86.8%) and wet (74.1%) seasons. Escherichia coli spp., as indicators of recent fecal contamination, were isolated from 115 (25.7%) of the household water sources. Thirty three Salmonella, four enteroaggregative E. coli, and four enterotoxigenic E. coli isolates but no Shigella or Yersinia isolates were identified. This study revealed the absence of treated tap water and the poor quality of alternative sources with detectable pathogens in municipal Ibadan. Addressing the city-wide lack of access to potable water is an essential priority for preventing a high prevalence of feco-orally transmitted infections.


Assuntos
Água Potável , Abastecimento de Água , Humanos , Água Potável/microbiologia , Escherichia coli , Nigéria/epidemiologia , Cidades , Microbiologia da Água , Qualidade da Água
2.
Microbiol Spectr ; : e0054923, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676032

RESUMO

Klebsiella oxytoca is an opportunistic pathogen causing serious nosocomial infections. Knowledge about the population structure and diversity of healthcare-associated K. oxytoca from a genomic standpoint remains limited. Here, we characterized the phylogenetic relationships and genomic characteristics of 20 K. oxytoca sensu stricto isolates recovered from bloodstream infections at the Dartmouth-Hitchcock Medical Center, New Hampshire, USA from 2017 to 2021. Results revealed a diverse population consisting of 15 sequence types (STs) that together harbored 10 variants of the intrinsic beta-lactamase gene bla OXY-2, conferring resistance to penicillins. Similar sets of antimicrobial resistance (AMR) determinants reside in multiple distinct lineages, with no one lineage dominating the local population. To place the New Hampshire K. oxytoca in a broader context, we compared them to 304 publicly available genomes of clinical isolates from 18 countries. This global clinical K. oxytoca sensu stricto population is represented by over 65 STs that together harbored resistance genes against 14 antimicrobial classes, including eight bla OXY-2 variants. Three dominant STs in the global population (ST2, ST176, ST199) circulate across multiple countries and were also present in the New Hampshire population. The global K. oxytoca population is genetically diverse, but there is evidence for broad dissemination of a few lineages carrying distinct set of AMR determinants. Our findings reveal the clinical diversity of K. oxytoca sensu stricto and its importance in surveillance efforts aimed at monitoring the evolution of this drug-resistant nosocomial pathogen. IMPORTANCE The opportunistic pathogen Klebsiella oxytoca has been increasingly implicated in patient morbidity and mortality worldwide, including several outbreaks in healthcare settings. The emergence and spread of antimicrobial resistant strains exacerbate the disease burden caused by this species. Our study showed that clinical K. oxytoca sensu stricto is phylogenetically diverse, harboring various antimicrobial resistance determinants and bla OXY-2 variants. Understanding the genomic and population structure of K. oxytoca is important for international initiatives and local epidemiological efforts for surveillance and control of drug-resistant K. oxytoca.

3.
J Public Health Afr ; 13(3): 1720, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36393921

RESUMO

Background: Many sub-Saharan African patients receive clinical care from extramurally-supported research and surveillance. Dur- ing the COVID-19 pandemic, pausing these activities reduces pa- tient care, surveillance, and research staff employment, increasing pandemic losses. In Oyo State, Nigeria, we paused a multi-country invasive salmonellosis surveillance initiative and a rural clinical bac- teriology project. Objective: Working with research partners raises health facility con- cerns about SARS-CoV-2 transmission risks and incurs infection pre- vention costs, so we developed and implemented re-opening plans to protect staff and patients and help health facilities deliver care. Methods: Our reopening plan included appointing safety and per- sonal protective equipment (PPE) managers from existing project staff cadres, writing new standard operating procedures, implement- ing extensive assessed training, COVID-19 testing for staff, procuring and managing PPE, and providing secondary bacteraemia blood culture support for COVID-19 patients in State isolation facilities. Results: Surveillance data showed that the pandemic reduced care access and negatively affected patient unsupervised antibacterial use. The re-opening plan repurposed human and material resources from national and international extramurally-supported programs to mitigate these effects on public health. Conclusions: A structured reopening plan restarted care, surveil- lance, and infection prevention and control.

4.
Elife ; 102021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34143732

RESUMO

Background: Despite recent insights into cholera transmission patterns in Africa, regional and local dynamics in West Africa-where cholera outbreaks occur every few years-are still poorly understood. Coordinated genomic surveillance of Vibrio cholerae in the areas most affected may reveal transmission patterns important for cholera control. Methods: During a regional sequencing workshop in Nigeria, we sequenced 46 recent V. cholerae isolates from Cameroon, Niger, and Nigeria (37 from 2018 to 2019) to better understand the relationship between the V. cholerae bacterium circulating in these three countries. Results: From these isolates, we generated 44 whole Vibrio cholerae O1 sequences and analyzed them in the context of 1280 published V. cholerae O1 genomes. All sequences belonged to the T12 V. cholerae seventh pandemic lineage. Conclusions: Phylogenetic analysis of newly generated and previously published V. cholerae genomes suggested that the T12 lineage has been continuously transmitted within West Africa since it was first observed in the region in 2009, despite lack of reported cholera in the intervening years. The results from this regional sequencing effort provide a model for future regionally coordinated surveillance efforts. Funding: Funding for this project was provided by Bill and Melinda Gates Foundation OPP1195157.


Assuntos
Cólera , Vibrio cholerae O1 , África Ocidental/epidemiologia , Camarões/epidemiologia , Cólera/epidemiologia , Cólera/microbiologia , Cólera/transmissão , Genoma Bacteriano/genética , Humanos , Epidemiologia Molecular , Filogenia , Vibrio cholerae O1/classificação , Vibrio cholerae O1/genética
5.
Am J Trop Med Hyg ; 103(2): 554-557, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32524953

RESUMO

SARS-CoV-2, the etiologic agent of COVID-19, is shed in stool. SARS coronaviruses have been detected in wastewater during outbreaks in China, Europe, and the United States. In this perspective, we outline the risk fecal shedding poses at locations without safely managed sanitation, as in most of Nigeria where we work. We believe that feco-oral transmission could occur if community transmission becomes high and sustained in densely populated cities without proper sanitation in Nigeria and many other African and Asian settings. In the absence of basic sanitation, or where existing sanitation is not safely managed, groundwater, which is often drawn up from wells and boreholes for drinking and household use, can become contaminated with enteric bacteria and viruses from fecal matter. Endemic and epidemic transmission of multiple feco-oral pathogens via this route continues to be documented in areas without safely managed sanitation, and, therefore, the risk of SARS-CoV-2 transmission needs to be evaluated, tracked, and forestalled in such settings. We suggest that fecal matter from treatment facilities and recovered patients should be carefully and properly disposed. Furthermore, environmental surveillance of SARS-CoV-2 in wastewater and accumulated human waste, as well as efforts to mitigate the virus' entry into unprotected household water sources, should be a priority part of the COVID-19 response in settings without safely managed sanitation for the duration of the pandemic.


Assuntos
Infecções por Coronavirus/transmissão , Fezes/virologia , Pneumonia Viral/transmissão , Saneamento , Qualidade da Água , Betacoronavirus , COVID-19 , Água Subterrânea , Humanos , Nigéria/epidemiologia , Pandemias , SARS-CoV-2 , Eliminação de Partículas Virais , Águas Residuárias/virologia , Poços de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...