Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(19): 197203, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765191

RESUMO

By means of new muon spin relaxation experiments, we disentangle extrinsic and intrinsic sources of low-temperature bulk magnetism in the candidate topological Kondo insulator (TKI) SmB_{6}. Results on Al-flux-grown SmB_{6} single crystals are compared to those on a large floating-zone-grown ^{154}Sm ^{11}B_{6} single crystal in which a 14 meV bulk spin exciton has been detected by inelastic neutron scattering. Below ∼10 K, we detect the gradual development of quasistatic magnetism due to rare-earth impurities and Sm vacancies. Our measurements also reveal two additional forms of intrinsic magnetism: (1) underlying low-energy (∼100 meV) weak magnetic moment (∼10^{-2} µ_{B}) fluctuations similar to those detected in the related candidate TKI YbB_{12} that persist down to millikelvin temperatures, and (2) magnetic fluctuations consistent with a 2.6 meV bulk magnetic excitation at zero magnetic field that appears to hinder surface conductivity above ∼4.5 K. We discuss potential origins of the magnetism.

2.
Phys Rev B ; 100(14)2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34131607

RESUMO

We report low-temperature muon spin relaxation/rotation (µSR) measurements on single crystals of the actinide superconductor UTe2. Below 5 K we observe a continuous slowing down of magnetic fluctuations that persists through the superconducting transition temperature (T c = 1.6 K), but we find no evidence of long-range or local magnetic order down to 0.025 K. The temperature dependence of the dynamic relaxation rate down to 0.4 K agrees with the self-consistent renormalization theory of spin fluctuations for a three-dimensional weak itinerant ferromagnetic metal. Our µSR measurements also indicate that the superconductivity coexists with the magnetic fluctuations.

3.
J Phys Condens Matter ; 27(39): 395401, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26381161

RESUMO

Raman and Brillouin spectroscopy were used to probe optic and acoustic phonons in bulk 2H-WSe2. Raman spectra collected under different polarization conditions allowed assignment of spectral peaks to various first- and second-order processes. In contrast to some previous studies, a Raman peak at ∼259 cm(-1)was found not to be due to the A(1g) mode but to a second-order process involving phonons at either the M or K point of the Brillouin zone. Resonance effects due to excitons were also observed in the Raman spectra. Brillouin spectra of 2H-WSe2 contain a single peak doublet arising from a Rayleigh surface mode propagating with a velocity of [Formula: see text] m s(-1). This value is comparable to that estimated from Density Functional Theory calculations and also to those for the transition metal diselenides 2H-TaSe2 and 2H-NbSe2. Unlike these two materials, however, peaks arising from scattering via the elasto-optic mechanism were not observed in Brillouin spectra of WSe2 despite its lower opacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...