Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 249, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973971

RESUMO

The structural diversity of chemical libraries, which are systematic collections of compounds that have potential to bind to biomolecules, can be represented by chemical latent space. A chemical latent space is a projection of a compound structure into a mathematical space based on several molecular features, and it can express structural diversity within a compound library in order to explore a broader chemical space and generate novel compound structures for drug candidates. In this study, we developed a deep-learning method, called NP-VAE (Natural Product-oriented Variational Autoencoder), based on variational autoencoder for managing hard-to-analyze datasets from DrugBank and large molecular structures such as natural compounds with chirality, an essential factor in the 3D complexity of compounds. NP-VAE was successful in constructing the chemical latent space from large-sized compounds that were unable to be handled in existing methods, achieving higher reconstruction accuracy, and demonstrating stable performance as a generative model across various indices. Furthermore, by exploring the acquired latent space, we succeeded in comprehensively analyzing a compound library containing natural compounds and generating novel compound structures with optimized functions.

2.
Methods Mol Biol ; 2586: 89-105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36705900

RESUMO

This chapter introduces the RNA secondary structure prediction based on the nearest neighbor energy model, which is one of the most popular architectures of modeling RNA secondary structure without pseudoknots. We discuss the parameterization and the parameter determination by experimental and machine learning-based approaches as well as an integrated approach that compensates each other's shortcomings. Then, folding algorithms for the minimum free energy and the maximum expected accuracy using the dynamic programming technique are introduced. Finally, we compare the prediction accuracy of the method described so far with benchmark datasets.


Assuntos
Dobramento de RNA , RNA , RNA/química , Conformação de Ácido Nucleico , Entropia , Algoritmos , Termodinâmica
3.
Genes (Basel) ; 13(11)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421829

RESUMO

Existing approaches to predicting RNA secondary structures depend on how the secondary structure is decomposed into substructures, that is, the architecture, to define their parameter space. However, architecture dependency has not been sufficiently investigated, especially for pseudoknotted secondary structures. In this study, we propose a novel algorithm for directly inferring base-pairing probabilities with neural networks that do not depend on the architecture of RNA secondary structures, and then implement this approach using two maximum expected accuracy (MEA)-based decoding algorithms: Nussinov-style decoding for pseudoknot-free structures and IPknot-style decoding for pseudoknotted structures. To train the neural networks connected to each base pair, we adopt a max-margin framework, called structured support vector machines (SSVM), as the output layer. Our benchmarks for predicting RNA secondary structures with and without pseudoknots show that our algorithm outperforms existing methods in prediction accuracy.


Assuntos
RNA , Software , Pareamento de Bases , RNA/genética , RNA/química , Conformação de Ácido Nucleico , Análise de Sequência de RNA/métodos , Sequência de Bases , Redes Neurais de Computação , Probabilidade
4.
NAR Genom Bioinform ; 4(1): lqac012, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35211670

RESUMO

Effective embedding is actively conducted by applying deep learning to biomolecular information. Obtaining better embeddings enhances the quality of downstream analyses, such as DNA sequence motif detection and protein function prediction. In this study, we adopt a pre-training algorithm for the effective embedding of RNA bases to acquire semantically rich representations and apply this algorithm to two fundamental RNA sequence problems: structural alignment and clustering. By using the pre-training algorithm to embed the four bases of RNA in a position-dependent manner using a large number of RNA sequences from various RNA families, a context-sensitive embedding representation is obtained. As a result, not only base information but also secondary structure and context information of RNA sequences are embedded for each base. We call this 'informative base embedding' and use it to achieve accuracies superior to those of existing state-of-the-art methods on RNA structural alignment and RNA family clustering tasks. Furthermore, upon performing RNA sequence alignment by combining this informative base embedding with a simple Needleman-Wunsch alignment algorithm, we succeed in calculating structural alignments with a time complexity of O(n 2) instead of the O(n 6) time complexity of the naive implementation of Sankoff-style algorithm for input RNA sequence of length n.

5.
Nat Commun ; 12(1): 941, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574226

RESUMO

Accurate predictions of RNA secondary structures can help uncover the roles of functional non-coding RNAs. Although machine learning-based models have achieved high performance in terms of prediction accuracy, overfitting is a common risk for such highly parameterized models. Here we show that overfitting can be minimized when RNA folding scores learnt using a deep neural network are integrated together with Turner's nearest-neighbor free energy parameters. Training the model with thermodynamic regularization ensures that folding scores and the calculated free energy are as close as possible. In computational experiments designed for newly discovered non-coding RNAs, our algorithm (MXfold2) achieves the most robust and accurate predictions of RNA secondary structures without sacrificing computational efficiency compared to several other algorithms. The results suggest that integrating thermodynamic information could help improve the robustness of deep learning-based predictions of RNA secondary structure.


Assuntos
Aprendizado Profundo , Dobramento de RNA , RNA/química , Algoritmos , Biologia Computacional/métodos , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Termodinâmica
6.
Bioinform Adv ; 1(1): vbab039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36700086

RESUMO

Motivation: Biological sequence classification is the most fundamental task in bioinformatics analysis. For example, in metagenome analysis, binning is a typical type of DNA sequence classification. In order to classify sequences, it is necessary to define sequence features. The k-mer frequency, base composition and alignment-based metrics are commonly used. On the other hand, in the field of image recognition using machine learning, image classification is broadly divided into those based on shape and those based on style. A style matrix was introduced as a method of expressing the style of an image (e.g. color usage and texture). Results: We propose a novel sequence feature, called genomic style, inspired by image classification approaches, for classifying and clustering DNA sequences. As with the style of images, the DNA sequence is considered to have a genomic style unique to the bacterial species, and the style matrix concept is applied to the DNA sequence. Our main aim is to introduce the genomics style as yet another basic sequence feature for metagenome binning problem in replace of the most commonly used sequence feature k-mer frequency. Performance evaluations showed that our method using a style matrix has the potential for accurate binning when compared with state-of-the-art binning tools based on k-mer frequency. Availability and implementation: The source code for the implementation of this genomic style method, along with the dataset for the performance evaluation, is available from https://github.com/friendflower94/binning-style. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

7.
J Bioinform Comput Biol ; 16(6): 1840025, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30616476

RESUMO

A popular approach for predicting RNA secondary structure is the thermodynamic nearest-neighbor model that finds a thermodynamically most stable secondary structure with minimum free energy (MFE). For further improvement, an alternative approach that is based on machine learning techniques has been developed. The machine learning-based approach can employ a fine-grained model that includes much richer feature representations with the ability to fit the training data. Although a machine learning-based fine-grained model achieved extremely high performance in prediction accuracy, a possibility of the risk of overfitting for such a model has been reported. In this paper, we propose a novel algorithm for RNA secondary structure prediction that integrates the thermodynamic approach and the machine learning-based weighted approach. Our fine-grained model combines the experimentally determined thermodynamic parameters with a large number of scoring parameters for detailed contexts of features that are trained by the structured support vector machine (SSVM) with the ℓ1 regularization to avoid overfitting. Our benchmark shows that our algorithm achieves the best prediction accuracy compared with existing methods, and heavy overfitting cannot be observed. The implementation of our algorithm is available at https://github.com/keio-bioinformatics/mxfold .


Assuntos
Modelos Moleculares , RNA/química , Algoritmos , Bases de Dados de Ácidos Nucleicos , Aprendizado de Máquina , Conformação de Ácido Nucleico , Máquina de Vetores de Suporte , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...