Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(6): 230410, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325597

RESUMO

Sagittal otoliths, typically composed of aragonite, are frequently laid down rather as vaterite during growth in hatchery-reared fish populations. Sagittal vateritization is believed to impair individual hearing/balancing abilities, but the causal mechanism remains unclear. Here we experimentally demonstrated that rearing in Sr-rich water induces sagittal vateritization in the HdrR-II1 inbred strain of the Japanese rice fish, Oryzias latipes. Both sagittae were partly vateritized in 70% of individuals subjected to the Sr2+ treatment (n = 10), whereas fish reared in normal tap water showed no sagittal vateritization (n = 8). Our result is consistent with the theoretical prediction that vaterite becomes thermodynamically more stable than aragonite as the Sr2+ concentration in solution increases. A vateritic layer develops surrounding the original aragonitic sagitta in vateritized otoliths, some of which take on a comma-like shape. Electron probe microanalysis demonstrates that the vateritized phase is characterized by lower Sr2+ and higher Mg2+ concentrations than the aragonitic phase. It is unlikely that increased environmental Sr2+ is responsible for the sagittal vateritization in farmed fish. However, our findings likely help to establish an in vivo assay using O. latipes to understand the physiological process underlying the sagittal vateritization in farmed fish.

2.
Data Brief ; 45: 108764, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36533282

RESUMO

Rock and sediment samples were collected from petit-spots in the northwestern Pacific. The sampling was conducted using deep-submergence vehicle (DSV) Shinkai 6500 and its mother ship, research vessel (RV) Yokosuka during YK20-14S and YK21-07S cruises. The collected rock samples are basalt and peperite. Some of the basalts include small mantle xenoliths (∼3 cm in diameter). The dataset of rock and sediment samples from the petit-spots located on >130 Ma northwestern Pacific plate are presented herein. The peperites are a reaction product between petit-spot magma and wet sediment, and the mantle xenoliths are fragmented mantle materials transported by the petit-spot magmas. Therefore, the petit-spot samples are of significant importance to elucidate modification process of the surface condition by petit-spot magma and to characterize the deep lithospheric mantle. The dataset presented herein provides in a sense a unique insight into the whole Pacific plate just before its subduction beneath the Japan arc.

3.
Nature ; 505(7482): 204-7, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24291793

RESUMO

Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks--in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas--provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...