Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 708, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824228

RESUMO

BACKGROUND: Groundnut is vulnerable to the major foliar fungal disease viz., late leaf spot (LLS) and rust in kharif season, which results in severe yield losses. Until now, LLS and rust resistance linked markers were developed based on GPBD 4 as a major donor source and were validated in its derivatives only, which restricted their use in marker assisted selection (MAS) involving other donors. METHODS AND RESULTS: The current study focused to validate LLS and rust resistance linked markers employing advanced breeding lines of F6 generation, derived from nine different crosses involving nine diverse parents, to identify potential markers for marker-assisted breeding of LLS and rust resistance in groundnut. Out of 28-trait linked markers used for validation, 8 were polymorphic (28.57%). Marker-trait association (MTA) and Single Marker Analysis (SMA) revealed that the SSR marker pPGPseq5D05 is significantly associated with both LLS (15.8% PVE) and rust (17.5% PVE) resistance, whereas, the marker IPAHM103 is tightly linked with rust resistance (26.8% PVE) alone. In silico analysis revealed that the marker gene for IPAHM103 is a zinc finger protein and the marker gene for pPGPseq5D05 is an ADP-ribosylation factor GTPase-activating protein. Both these protein products impart resistance or tolerance to biotic stress in crop plants. Two other markers namely, GMLQ975 and pPGPseq13A10 were also found to be associated with LLS resistance explaining MTA up to 60%. CONCLUSION: These gene specific markers will enable us to screen more number of germplasm lines or newly developed lines in MAS schemes for LLS and rust resistance using a wide range of resistant sources.


Assuntos
Arachis , Resistência à Doença , Doenças das Plantas , Resistência à Doença/genética , Arachis/genética , Arachis/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Marcadores Genéticos , Melhoramento Vegetal/métodos , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Locos de Características Quantitativas/genética , Genes de Plantas/genética , Mapeamento Cromossômico/métodos
2.
BMC Plant Biol ; 23(1): 493, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833626

RESUMO

BACKGROUND: Reproductive stage drought stress (RDS) is a major global threat to rice production. Due to climate change, water scarcity is becoming an increasingly common phenomenon in major rice-growing areas worldwide. Understanding RDS mechanisms will allow candidate gene identification to generate novel rice genotypes tolerant to RDS. RESULTS: To generate novel rice genotypes that can sustain yield under RDS, we performed gamma-irradiation mediated mutation breeding in the drought stress susceptible mega rice variety, MTU1010. One of the mutant MM11 (MTU1010 derived mutant11) shows consistently increased performance in yield-related traits under field conditions consecutively for four generations. In addition, compared to MTU1010, the yield of MM11 is sustained in prolonged drought imposed during the reproductive stage under field and in pot culture conditions. A comparative emerged panicle transcriptome analysis of the MTU1010 and MM11 suggested metabolic adjustment, enhanced photosynthetic ability, and hormone interplay in regulating yield under drought responses during emerged panicle development. Regulatory network analysis revealed few putative significant transcription factor (TF)-target interactions involved in integrated signalling between panicle development, yield and drought stress. CONCLUSIONS: A gamma-irradiate rice mutant MM11 was identified by mutation breeding, and it showed higher potential to sustain yield under reproductive stage drought stress in field and pot culture conditions. Further, a comparative panicle transcriptome revealed significant biological processes and molecular regulators involved in emerged panicle development, yield and drought stress integration. The study extends our understanding of the physiological mechanisms and candidate genes involved in sustaining yield under drought stress.


Assuntos
Oryza , Transcriptoma , Oryza/metabolismo , Secas , Melhoramento Vegetal , Genes Reguladores , Estresse Fisiológico/genética
3.
Mol Biol Rep ; 49(8): 7649-7663, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35612779

RESUMO

BACKGROUND: With the increase in population and economies of developing countries in Asia and Africa, the research towards securing future food demands is an imminent need. Among japonica and indica genotypes, indica rice varieties are largely cultivated across the globe. However, our present understanding of yield-contributing gene information stems mainly from japonica and studies on the yield potential of indica genotypes are limited. METHODS AND RESULTS: In the present study, yield contributing orthologous genes previously characterized from japonica varieties were identified in the indica genome and analysed with binGO tool for GO biological processes categorization. Transcription factor binding site enrichment analysis in the promoters of yield-related genes of indica was performed with MEME-AME tool that revealed putative common TF regulators are enriched in flower development, two-component signalling and water deprivation biological processes. Gene regulatory networks revealed important TF-target interactions that might govern yield-related traits. Some of the identified candidate genes were validated by qRT-PCR analysis for their expression and association with yield-related traits among 16 widely cultivated popular indica genotypes. Further, SNP-metabolite-trait association analysis was performed using high-yielding indica variety Rasi. This resulted in the identification of putative SNP variations in TF regulators and targeted yield genes significantly linked with metabolite accumulation. CONCLUSIONS: The study suggests some of the high yielding indica genotypes such as Ravi003, Rasi and Kavya could be used as potential donors in breeding programs based on yield gene expression analysis and SNP-metabolites associations.


Assuntos
Oryza , Redes Reguladoras de Genes/genética , Genótipo , Oryza/genética , Fenótipo , Melhoramento Vegetal
4.
Mol Biol Rep ; 47(11): 8615-8627, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33098552

RESUMO

Rice (Oryza sativa L.) yield enhancement is one of the prime objectives of plant breeders. Elucidation of the inheritance of grain weight, a key yield component trait, is of paramount importance for raising the yield thresholds in rice. In the present investigation, we employed Next-Generation Sequencing based QTL-seq approach to identify major genomic regions associated with grain weight using mapping populations derived from a cross between BPT5204 and MTU3626. QTL-seq analysis identified three grain weight quantitative trait loci (QTL) viz., qGW1 (35-40 Mb), qGW7 (10-18 Mb), and qGW8 (2-5 Mb) on chromosomes 1, 7 and 8, respectively and all are found to be novel. Further, qGW8 was confirmed through conventional QTL mapping in F2, F3 and BC1F2 populations and found to explain the phenotypic variance of 17.88%, 16.70% and 15.00%, respectively, indicating a major QTL for grain weight. Based on previous reports, two candidate genes in the qGW8 QTL were predicted i.e., LOC_Os08g01490 (Cytochrome P450), and LOC_Os08g01680 (WD domain, G-beta repeat domain containing protein) and through in silico analysis they were found to be highly expressed in reproductive organs during different stages of grain development. Here, we have demonstrated that QTL-seq is one of the rapid approaches to uncover novel QTLs controlling complex traits. The candidate genes identified in the present study undoubtedly enhance our understanding of the mechanism and inheritance of the grain weight. These candidate genes can be exploited for yield enhancement after confirmation through complementary studies.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Cromossomos de Plantas/genética , DNA de Plantas/genética , Polimorfismo de Nucleotídeo Único
5.
Mol Biol Rep ; 47(3): 1935-1948, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32067160

RESUMO

Rice production in recent years is highly affected by rapidly increasing temperatures in the tropical and sub-tropical countries, which threatens the sustainable production in near future. Hence, understanding the heat tolerance mechanism and evolving tolerant varieties is an immense need in the staple crop rice. An experiment has been conducted to identify differentially expressed genes in rice under heat stress conditions by employing a diverse set of 32 rice genotypes that includes reported heat tolerant genotypes Nagina 22 (N22) and Dular. Screening of the genotypes at field conditions during Summer-2018 for reproductive stage heat tolerance (wherein the mean minimum (29.8 °C) and maximum (38.4 °C) temperatures surpassed optimum temperatures (25 °C night/30 °C day) required for rice flowering and grain filling stages) and lab conditions employing thermal induction response (TIR) technique to know the genotype's acquired thermal tolerance revealed that the genotype FR13A (indica landrace) showed highest overall performance for multitude of traits viz., 95.29% of spikelet fertility (SF-%) at field level and 100% seedling survival percentage (SSP) at sub-lethal temperatures under laboratory conditions. The relative performance (under TIR) across all the three traits viz., relative shoot length (RSL) (4.91), relative root length (RRL) (equal to the control) and relative seedling dry weight (RSDW) (6.94) over control is high when compared to the other genotypes under study. However, the highly susceptible genotype PUSA1121 performed with 43.59 of SF%, 73.33% SSP, - 43.59 of RSL, - 36.02 of RRL over control. Hence, these contrasting genotypes were used for molecular analysis for identification of differentially expressed genes by employing 29 heat related gene specific primers. Five genes viz., OsGSK1, TT1, HSP70-OsEnS-45, OsHSP74.8 and OsHSP70 have shown differential expression between the two genotypes. Hence, the genotype FR13A, an 'indica' genotype, can be utilized in heat tolerance breeding programmes as donor parent in addition to the reported 'aus' genotypes, N22 and Dular. To our knowledge this is the first indica genotype identified for heat tolerance. The HSP70s, TT1 and OsGSK1 that proved with differential expression might be used for identification of gene specific InDels and thereby to develop functional markers that help in the marker assisted introgression breeding to develop heat tolerant varieties that can sustain production under dramatically changing climatic conditions.


Assuntos
Perfilação da Expressão Gênica/métodos , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas , Regulação da Expressão Gênica de Plantas , Genótipo , Resposta ao Choque Térmico , Oryza/genética , Melhoramento Vegetal , Proteínas de Plantas/genética
6.
Sci Rep ; 9(1): 8192, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160789

RESUMO

In rice (Oryza sativa L.), during the course of domestication, numerous beneficial alleles remain untapped in the progenitor wild species and landraces. This study aims at uncovering these promising alleles of six key genes influencing the yield, such as DEP1, Ghd7, Gn1a, GS3, qSW5 and sd1 by targeted resequencing of the 200 rice genotypes. In all, 543 nucleotide variations including single nucleotide polymorphisms and insertion and deletion polymorphisms were identified from the targeted genes. Of them, 225 were novel alleles, which identified in the present study only and 91 were beneficial alleles that showed significant association with the yield traits. Besides, we uncovered 128 population-specific alleles with indica being the highest of 79 alleles. The neutrality tests revealed that pleiotropic gene, Ghd7 and major grain size contributing gene, GS3 showed positive and balanced selection, respectively during the domestication. Further, the haplotype analysis revealed that some of the rice genotypes found to have rare haplotypes, especially the high yielding variety, BPT1768 has showed maximum of three genes such as Gn1a-8, qSW5-12 and GS3-29. The rice varieties with novel and beneficial alleles along with the rare haplotypes identified in the present study could be of immense value for yield improvement in the rice breeding programs.


Assuntos
Alelos , Genes de Plantas , Oryza/genética , Cromossomos de Plantas , Variação Genética , Genótipo , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...