Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839637

RESUMO

Chemotherapy is the most used method after surgery in the treatment of colon cancer. Cancer cells escape the recognition mechanism of immune system cells to survive and develop chemoresistance. Therefore, the use of immunotherapy in combination with chemotherapy can increase the effectiveness of the treatment. Nanoparticles have been used clinically to increase the accumulation of therapeutics in target tissues and reduce toxicity. In this paper, nanoplexes were formed via cationic cyclodextrin polymer, 5-Fluorouracil, and Interleukin-2 based on the opposite charge interaction of macromolecules without undergoing any structural changes or losing the biological activity of Interleukin-2. Anticancer activities of nanoplexes were determined in two-dimensional and three-dimensional cell culture setups. The dual drug-loaded cyclodextrin nanoplexes diffused deeper into the spheroids and accelerated apoptosis when compared with 5-FU solutions. In the colorectal tumor-bearing animal model, survival rate, antitumor activity, metastasis, and immune response parameters were assessed using a cyclodextrin derivative, which was found to be safe based on the ALT/AST levels in healthy mice. Histomorphometric analysis showed that the groups treated with the nanoplex formulation had significantly fewer initial tumors and lung foci when compared with the control. The dual drug-loaded nanoplex could be a promising drug delivery technique in the immunochemotherapy of colorectal cancer.

2.
Int J Pharm ; 623: 121940, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35724824

RESUMO

Immune system deficiencies are crucial in the progression of cancer, predominantly because immune cells are not stimulated by cytokines to eradicate cancer cells. Immunochemotherapy is currently considered an innovative approach that creates pathways in cancer treatment, sometimes also aiding in the efficacy of chemotherapeutics. The aim of this study was to prepare a cyclodextrin (CD) nanoplex based on charge interaction to deliver the anticancer drug 5-fluorouracil (5-FU) and Interleukin-2 (IL-2), thereby forming a nanoscale drug delivery system aimed at chemo-immunotherapy for colorectal cancers. The CD:IL-2 nanoplexes were obtained with a particle size below 100 nm and a cationic surface charge based on the extent of charge interaction of the cationic CD polymer with negatively charged IL-2. The loading capacity of CD nanoplexes was 40% for 5-FU and 99.8% for IL-2. Nanoplexes maintained physical stability in terms of particle size and zeta potential in aqueous solution for 1 week at + 4 °C. Moreover, the structural integrity of IL-2 loaded into CD nanoplexes was confirmed by SDS-PAGE analysis. The cumulative release rates of both 5-FU and IL-2 were found to be more than 80% in simulated biological fluids in 12 h. Cell culture studies demonstrate that CD polymers are safe on healthy L929 mouse fibroblast cells. Drug-loaded CD nanoplexes were determined to have a higher anticancer effect than free drug solution against CT26 mouse colon carcinoma cells. In addition, intestinal permeability studies supported the conclusion that CD nanoplexes could be promising candidates for oral chemotherapy as well. In conclusion, effective cancer therapy utilizing the absorptive/cellular uptake effect of CDs, the synergic effect and co-transport of chemotherapeutic drugs and immunotherapeutic molecules is a promising approach. Furthermore, the transport of IL-2 with this nano-sized system can reduce or avoid its toxicity problem in the clinic.


Assuntos
Neoplasias do Colo , Ciclodextrinas , Nanopartículas , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Ciclodextrinas/uso terapêutico , Fluoruracila , Imunoterapia , Interleucina-2 , Camundongos , Nanopartículas/química
3.
Pharm Dev Technol ; 26(7): 797-806, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34219578

RESUMO

The purpose of this study was to investigate the impact of anticancer drug erlotinib-randomly methylated-ß-cyclodextrin complex (ERL-RAMEB CD) on drug solubility and dissolution rate. Phase solubility study showed erlotinib displayed maximum solubility in RAMEB CD solution and the stability constant (Kc) was calculated to be 370 ± 16 M-1. The optimal formulation was obtained with ERL-RAMEB CD in a 1:1 molar ratio using the co-lyophilization technique. Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) verified the inclusion of complex formation. In vitro dissolution study confirmed ERL-RAMEB CD as a favorable approach to increase drug dissolution with a 1.5-fold increase than free ERL at 1 h. An improved dissolution with ∼88.4% drug release at 1 h was observed, in comparison with Erlotinib with ∼58.7% release in 45 min. The in vitro cytotoxicity results indicated that the ERL-RAMEB CD inclusion complex reduced cell viability than free erlotinib. Caco-2 cell uptake that is indicative of drug intestinal permeability resulted in a 5-fold higher uptake of ERL-RAMEB CD inclusion complex than the ERL solution. Hence, ERL-RAMEB CD complexation displays a strong potential to increase dissolution and permeability of erlotinib leading eventually to enhanced oral bioavailability.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cloridrato de Erlotinib/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Células A549/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Células CACO-2/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral/efeitos dos fármacos , Liberação Controlada de Fármacos , Cloridrato de Erlotinib/uso terapêutico , Humanos , Absorção Intestinal , Metilação , Camundongos , Microscopia Eletrônica de Varredura , Solubilidade , Resultado do Tratamento , beta-Ciclodextrinas/administração & dosagem , beta-Ciclodextrinas/uso terapêutico
4.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205019

RESUMO

Clinically, different approaches are adopted worldwide for the treatment of cancer, which still ranks second among all causes of death. Immunotherapy for cancer treatment has been the focus of attention in recent years, aiming for an eventual antitumoral effect through the immune system response to cancer cells both prophylactically and therapeutically. The application of nanoparticulate delivery systems for cancer immunotherapy, which is defined as the use of immune system features in cancer treatment, is currently the focus of research. Nanomedicines and nanoparticulate macromolecule delivery for cancer therapy is believed to facilitate selective cytotoxicity based on passive or active targeting to tumors resulting in improved therapeutic efficacy and reduced side effects. Today, with more than 55 different nanomedicines in the market, it is possible to provide more effective cancer diagnosis and treatment by using nanotechnology. Cancer immunotherapy uses the body's immune system to respond to cancer cells; however, this may lead to increased immune response and immunogenicity. Selectivity and targeting to cancer cells and tumors may lead the way to safer immunotherapy and nanotechnology-based delivery approaches that can help achieve the desired success in cancer treatment.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Sistema Imunitário/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Imunoterapia , Nanopartículas , Neoplasias/imunologia
5.
J Drug Target ; 29(4): 439-453, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33210947

RESUMO

Erlotinib (ERL), a tyrosine kinase inhibitor approved for therapeutic use in non-small cell lung cancer is further researched for eventual liver cancer treatment. However, conventional ERL has important bioavailability problems resulting from oral administration, poor solubility and gastrointestinal degradation into inactive metabolites. Alternative administration routes and nanoparticulate drug delivery systems are studied to prevent or reduce these drawbacks. In this study, ERL-loaded CD nanosphere and nanocapsule formulations capable of cholesterol depletion in resistant cancer cells were evaluated for ERL delivery. Drug loading and release profile depended largely on the surface charge of nanoparticles. Antiproliferative activity data obtained from 2D and 3D cell culture models demonstrated that polycationic ßCD nanocapsules were the most effective formulation for ERL delivery to lung and liver cancer cells. 3D tumour tumoral penetration studies further revealed that nanocapsule formulations penetrated deeper into the tumour through the multilayered cells. Furthermore, all formulations were able to extract membrane cholesterol from lung and liver cancer cell lines, indicating the induction of apoptosis and overcoming drug resistance. In conclusion, given their tumoral penetration and cell membrane cholesterol depletion abilities, amphiphilic CD nanocapsules emerge as promising alternatives to improve the safety and efficiency of ERL treatment of both liver and lung tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ciclodextrinas/administração & dosagem , Cloridrato de Erlotinib/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Células A549 , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Colesterol/administração & dosagem , Colesterol/síntese química , Colesterol/farmacocinética , Ciclodextrinas/síntese química , Ciclodextrinas/farmacocinética , Relação Dose-Resposta a Droga , Cloridrato de Erlotinib/síntese química , Cloridrato de Erlotinib/farmacocinética , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Resultado do Tratamento , Células Tumorais Cultivadas
6.
Recent Pat Drug Deliv Formul ; 12(4): 252-266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30674269

RESUMO

BACKGROUND: For the past few decades, there has been considerable research interest in drug delivery strategies using nanoparticulate systems as carriers for a wide range of active pharmaceutical ingredients. OBJECTIVE: It is known that nanoparticulate drug delivery systems comprise a wide variety of dosage forms including nanospheres, micelles, solid lipid nanoparticles, nanoliposomes, dendrimers, magnetic nanoparticles, and nanocapsules. METHODS: This review describes nanocapsule preparation techniques and their applications for the treatment of several diseases using patents and examples from the literature. RESULTS: Nanocapsules are vesicular systems consisting of an inner liquid core (aqueous/oily) surrounded by a polymeric wall that has immense potential as drug carriers because of the many advantages like improving poor aqueous solubility, stabilizing drugs by protecting the molecule from the environment, providing the desired pharmacokinetic profile, allowing controlled release, as well as facilitating oral administration. CONCLUSION: The present study discusses and summarizes patents related to preparation methods of and recent studies from the last 10 years on nanocapsules as drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Sistemas de Liberação de Medicamentos/tendências , Humanos , Patentes como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...