Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38790864

RESUMO

Microplastics (MPs) have attracted considerable attention as one of the most remarkable food and drink pollutants in recent years. Disposable cups, which are widely used as single-use containers, have been suspected as the primary sources of MPs found in cold and hot beverages. In this study, the effect of different exposure times (0, 5, 10 and 20 min) and temperatures (4 °C, 50 °C and 80 °C) on MP release from the single-use cups made of four different materials [polypropylene (PP), polystyrene (PS), polyethylene (PE) coated paper cups and expanded polystyrene (EPS)] into the water was investigated. The number of MPs ranged from 126 p/L to 1420 p/L, while the highest and lowest counts were observed in the PP (50 °C for 20 min) and PE-coated paper cups (4 °C 0 min), respectively. Washing the cups with ultrapure water prior to use reduced the MP release by 52-65%. SEM images demonstrated the abrasion on the surface of the disposable cups as a result of hot water exposure. Intensities of FTIR absorbance levels at some wavelengths were decreased by the water treatment, which could be evidence of surface abrasion. The annual MP exposure of consumers was calculated as 18,720-73,840 by the consumption of hot and cold beverages in disposable cups. In conclusion, as the level and potential toxicity of MP exposure in humans are not yet fully known, this study sheds light on the number of MPs transferred to cold and hot beverages from single-use disposable cups.

2.
Food Sci Nutr ; 11(9): 5102-5113, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701209

RESUMO

To valorize abundant, unexploited, and low-cost agro-industrial by-products, olive pomace is proposed as a sustainable and renewable raw material for cellulose microfibers (CMFs) production. In this study, CMFs were extracted from olive pomace using alkaline and bleaching treatments and characterized in terms of morphological, structural, and thermal properties. Afterward, the reinforcing capability of microfibers was examined using carboxymethyl cellulose (CMC) as a polymer matrix by the solvent casting process. The effects of CMF loading (1%, 3%, 5%, and 10%) on the composites' mechanical, physical, morphological, and thermal properties were assessed. CMF incorporation led to a decrease in moisture content (MC), water solubility (WS), and water vapor permeability (WVP) and an increase in tensile strength (TS), stiffness and transparency values, and thermal stability of CMC films. Increasing CMF content to 5%, increased the TS and elasticity modulus by 54% and 79%, respectively, and reduced the WVP and light transmissivity at 280 nm, by 22% and 47%, respectively. The highest water, moisture, light barrier, and mechanical properties of composites were reached at 5% CMFs.

3.
Int J Biol Macromol ; 244: 125240, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37301346

RESUMO

In this study, sodium alginate based biodegradable films were prepared by the supplementation with postbiotics of Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) W2 strain and the effect of probiotics (probiotic-SA film) and postbiotics (postbiotic-SA film) incorporation on physical, mechanical (tensile strength and elongation at break), barrier (oxygen and water vapor permeability), thermal and antimicrobial properties of the films was investigated. The pH, titratable acidity and brix of the postbiotic was 4.02, 1.24 % and 8.37, respectively while gallic acid, protocatechuic acid, myricetin and catechin were the major phenolic compounds. Mechanical and barrier properties of the alginate-based films were improved by probiotic or postbiotic supplementation while postbiotic showed a more pronounced (P < 0.05) effect. Thermal analysis showed that postbiotics supplementation increased thermal stability of the films. In FTIR spectra, the absorption peaks at 2341 and 2317 cm-1 for probiotic-SA and postbiotic-SA edible films confirmed the incorporation of probiotics/postbiotics of L. plantarum W2 strain. Postbiotic supplemented films showed strong antibacterial activity against gram-positive (L. monocytogenes, S. aureus and B. cereus) and gram-negative bacterial (E. coli O157:H7) strains while probiotic-SA films did not show any antibacterial effect against the test pathogens. SEM images revealed that the supplementation of postbiotics provided a rougher and rigid film surface. Overall, this paper brought a new perspective for development of novel active biodegradable films by incorporation of postbiotics with improved performance.


Assuntos
Escherichia coli O157 , Probióticos , Alginatos/química , Staphylococcus aureus , Embalagem de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química
4.
J Sci Food Agric ; 101(11): 4779-4788, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33502754

RESUMO

BACKGROUND: Lactic acid fermentation is a natural way to increase the bioactive and functional properties of fruit and vegetable juices. In this study, the in vitro gastrointestional digestion of phenolics, flavonoids, anthocyanins, and antioxidant activity of mixed vegetable juice was investigated as affected by fermentation with probiotic Lactobacillus plantarum and non-thermal treatments (ultraviolet (UV) and/or ultrasonic (US) treatment). For this purpose heat, US, UV or US/UV treated vegetable juice samples were fermented by probiotic L. plantarum and percentage recovery of bioactive (total phenolic (TPC), total flavonoid (TFC) and total anthocyanin contents (TAC) and antioxidant (DPPH [1,1-diphenyl-2-picrylhydrazyl] and CUPRAC [CUPric Reducing Antioxidant Capacity]) properties was evaluated during simulated gastrointestinal digestion. RESULTS: Total mesophilic aerobic bacteria (TMAB) and total yeast-mold (TYM) counts were significantly decreased by thermal and non-thermal processes and coliforms were fully eliminated. The bioaccessibility of total phenolics, anthocyanins, and flavonoids decreased after in vitro digestion. In general, recovery (5.78-34.71%) and serum availability of the bioactives was positively influenced by the fermentation and non-thermal treatments. Phenolics and anthocyanins exhibited the highest and the lowest recovery, respectively, while post-digestion recovery of antioxidant was between that of the phenolics and anthocyanins. CONCLUSIONS: This study confirmed that US and UV treatment could be advantageous alternatives to heat treatment for ensuring the microbial safety of vegetable juices with increased in vitro bioaccessibility of bioactive compounds while probiotic fermentation with L. plantarum contributed to the improvement of the bioactive profile. © 2021 Society of Chemical Industry.


Assuntos
Sucos de Frutas e Vegetais/microbiologia , Lactobacillus plantarum/metabolismo , Antocianinas/análise , Antocianinas/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Digestão , Fermentação , Flavonoides/análise , Flavonoides/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Sucos de Frutas e Vegetais/análise , Trato Gastrointestinal/metabolismo , Humanos , Fenóis/análise , Fenóis/metabolismo , Probióticos/análise , Probióticos/metabolismo , Verduras/química , Verduras/metabolismo , Verduras/microbiologia
5.
Int J Biol Macromol ; 145: 124-132, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31843601

RESUMO

The aim of this study was to develop sodium alginate based active films incorporated with essential oils (EO) of R. officinalis L, A. herba alba Asso, O. basilicum L and M. pulegium L. the films were characterized in terms of bioactive properties including thickness, moisture content, water vapor and oxygen permeability, release test, mechanical, molecular, biodegradability and thermal properties. The results showed that the active films had a strong antibacterial effect against the six pathogenic bacteria with the inhibition zone between18.5 and 38.67 mm. furthermore, the antioxidant capacity of the films ranged from 4.57% to 23.09%. According to results of release test, physical, molecular, mechanical, biodegradability, thermal and barrier properties, the EOs were uniformly dispersed in the polymer matrix and improved slightly thermal (Tm) and barrier properties, while decreased tensile strength and it was obtained that this film is biodegradable in the soil. In conclusion, it could be said that sodium alginate based edible films incorporated with EO have a potential to be used food packaging applications.


Assuntos
Alginatos/química , Filmes Comestíveis , Óleos Voláteis/química , Plantas Medicinais/química , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Bactérias/efeitos dos fármacos , Plásticos Biodegradáveis/química , Embalagem de Alimentos/métodos , Oxigênio/química , Permeabilidade/efeitos dos fármacos , Resistência à Tração/efeitos dos fármacos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...