Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 270: 106535, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412495

RESUMO

Carboxypeptidase T (CPT) from Thermoactinomyces vulgaris (EC 3.4.17.18) has a broad substrate specificity, the mechanism of which remains unclear. It cleaves off arginine residues by 10, and lysine residues by 100 times worse than hydrophobic leucine residues despite the presence of negatively charged Asp260 at the bottom of the primary specificity pocket. To study the relationship between the structure and specificity the 3D structure of CPT in complex with the stable transition state analog N-sulfamoyl-l-lysine (SLys) was determined in which the S-atom imitates the sp3-hybridized carbon in the scissile-bond. Crystals grown in microgravity has the symmetry of space group P6322. The present complex structure was compared with the previously reported complex structure of CPT and N-sulfamoyl-L-arginine (SArg). The location/binding of SLys in the active site of CPT very closely resembled that of SArg, and the positively charged N-atom of SLys was at the same position as the corresponding positively charged N-atom of SArg. The SLys complex is stabilized by the hydrogen bond between the nitrogen atom and OH-group of Thr257. The contact areas of the residues Tyr255, Leu211, and Thr262 with SLys were reduced in comparison with the same of SArg. This difference in bonding of SArg and SLys side chains in the primary specificity pocket induces shifts differences within the catalytic center (especially Tyr255-O20 and S18-Arg129 N1 gap) that may influence the enzyme's catalytic reaction. Therefore, this information may be useful for the design of carboxypeptidases with improved selectivity towards Arg/Lys for biotechnological applications.


Assuntos
Proteínas de Bactérias/química , Carboxipeptidases/química , Thermoactinomyces/enzimologia , Proteínas de Bactérias/metabolismo , Carboxipeptidases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Lisina/análogos & derivados , Lisina/metabolismo , Modelos Moleculares , Especificidade por Substrato , Thermoactinomyces/química , Thermoactinomyces/metabolismo
2.
PLoS One ; 14(12): e0226636, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31887148

RESUMO

The carboxypeptidase T (CPT) from Thermoactinomyces vulgaris has an active site structure and 3D organization similar to pancreatic carboxypeptidases A and B (CPA and CPB), but differs in broader substrate specificity. The crystal structures of CPT complexes with the transition state analogs N-sulfamoyl-L-leucine and N-sulfamoyl-L-glutamate (SLeu and SGlu) were determined and compared with previously determined structures of CPT complexes with N-sulfamoyl-L-arginine and N-sulfamoyl-L-phenylalanine (SArg and SPhe). The conformations of residues Tyr255 and Glu270, the distances between these residues and the corresponding ligand groups, and the Zn-S gap between the zinc ion and the sulfur atom in the ligand's sulfamoyl group that simulates a distance between the zinc ion and the tetrahedral sp3-hybridized carbon atom of the converted peptide bond, vary depending on the nature of the side chain in the substrate's C-terminus. The increasing affinity of CPT with the transition state analogs in the order SGlu, SArg, SPhe, SLeu correlates well with a decreasing Zn-S gap in these complexes and the increasing efficiency of CPT-catalyzed hydrolysis of the corresponding tripeptide substrates (ZAAL > ZAAF > ZAAR > ZAAE). Thus, the side chain of the ligand that interacts with the primary specificity pocket of CPT, determines the geometry of the transition complex, the relative orientation of the bond to be cleaved by the catalytic groups of the active site and the catalytic properties of the enzyme. In the case of CPB, the relative orientation of the catalytic amino acid residues, as well as the distance between Glu270 and SArg/SPhe, is much less dependent on the nature of the corresponding side chain of the substrate. The influence of the nature of the substrate side chain on the structural organization of the transition state determines catalytic activity and broad substrate specificity of the carboxypeptidase T.


Assuntos
Proteínas de Bactérias/química , Metaloexopeptidases/química , Thermoactinomyces/enzimologia , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Especificidade por Substrato
3.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 10): 638-643, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30279315

RESUMO

A site-directed mutagenesis method has been used to obtain the G215S/A251G/T257A/D260G/T262D mutant of carboxypeptidase T from Thermoactinomyces vulgaris (CPT), in which the amino-acid residues of the S1' subsite are substituted by the corresponding residues from pancreatic carboxypeptidase B (CPB). It was shown that the mutant enzyme retained the broad, mainly hydrophobic selectivity of wild-type CPT. The mutant containing the implanted CPB S1' subsite was crystallized and its three-dimensional structure was determined at 1.29 Šresolution by X-ray crystallography. A comparison of the three-dimensional structures of CPT, the G215S/A251G/T257A/D260G/T262D CPT mutant and CPB showed that the S1' subsite of CPT has not been distorted by the mutagenesis and adequately reproduces the structure of the CPB S1' subsite. The CPB-like mutant differs from CPB in substrate selectivity owing to differences between the two enzymes outside the S1' subsite. Moreover, the difference in substrate specificity between the enzymes was shown to be affected by residues other than those that directly contact the substrate.


Assuntos
Proteínas de Bactérias/química , Carboxipeptidase B/química , Carboxipeptidases/química , Mutação , Thermoactinomyces/química , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboxipeptidase B/genética , Carboxipeptidase B/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Pâncreas/química , Pâncreas/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Suínos , Thermoactinomyces/enzimologia , Termodinâmica
5.
FEBS J ; 282(7): 1214-24, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25619204

RESUMO

The crystal structures of carboxypeptidase T (CpT) complexes with phenylalanine and arginine substrate analogs - benzylsuccinic acid and (2-guanidinoethylmercapto)succinic acid - were determined by the molecular replacement method at resolutions of 1.57 Å and 1.62 Å to clarify the broad substrate specificity profile of the enzyme. The conservative Leu211 and Leu254 residues (also present in both carboxypeptidase A and carboxypeptidase B) were shown to be structural determinants for recognition of hydrophobic substrates, whereas Asp263 was for recognition of positively charged substrates. Mutations of these determinants modify the substrate profile: the CpT variant Leu211Gln acquires carboxypeptidase B-like properties, and the CpT variant Asp263Asn the carboxypeptidase A-like selectivity. The Pro248-Asp258 loop interacting with Leu254 and Tyr255 was shown to be responsible for recognition of the substrate's C-terminal residue. Substrate binding at the S1' subsite leads to the ligand-dependent shift of this loop, and Leu254 side chain movement induces the conformation rearrangement of the Glu277 residue crucial for catalysis. This is a novel insight into the substrate selectivity of metallocarboxypeptidases that demonstrates the importance of interactions between the S1' subsite and the catalytic center.


Assuntos
Proteínas de Bactérias/química , Carboxipeptidases/química , Thermoactinomyces/enzimologia , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Especificidade por Substrato , Succinatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...