Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Rep ; 12(1): 19252, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357474

RESUMO

A number of studies have reported frequent incidence of c-kit gene mutations in association with core binding factor acute myeloid leukemia (CBF-AML). These genetic changes have become important prognostic predictors in patients with abnormal karyotype. Aim of this study was the detection of nucleotide alterations in newly diagnosed acute myeloid leukemia patients for three exons of c-kit gene, including cytogenetically normal patients. Thirty-one de novo AML patients were screened for any possible variations in exon 8, 11 and 17 sequences of c-kit proto-oncogene leading to amino acid substitutions or frame shift. Sanger sequencing method was employed followed by sequence analysis. Mutation data was then correlated with clinical and hematological parameters of patients and prognostic significance of genetic changes was assessed as well. The computational tools were then used to further understand the extent of damage caused by these mutations to c-kit protein. Fifteen (48.4%) mutant patients were observed with single, double or multiple mutations in one, two or all three exons studied. The analysis revealed eight new alterations which were not reported previously. Significant variation among mutant and non-mutant group of patients was observed with respect to FAB subtypes (x2 = 12.524, p = 0.029), Spleen size (x2 = 4.288, p = 0.038) and Red blood cell count (x2 = 8.447, p = 0.007). The survival analysis indicates poor overall and event free survival outcomes in mutant individuals. Furthermore, the in silico analysis suggests that changes in nucleotide sequences can possibly damage the protein structure and effect it's function. This study emphasizes the need to consider screening of c-kit gene alterations not only in CBF-AML but in cytogenetically normal AML patients as well. In current investigation the effect of mutation Arg420Gly on structure and function of c-kit protein was investigated, as this was the most observed substitution in present cohort. Various bioinformatics tools and techniques were employed, which determined that Arg420Gly is possibly non-pathogenic mutation.


Assuntos
Fatores de Ligação ao Core , Leucemia Mieloide Aguda , Humanos , Fatores de Ligação ao Core/genética , Proteínas Proto-Oncogênicas c-kit/genética , Éxons , Mutação , Prognóstico , Proto-Oncogenes
2.
Saudi J Biol Sci ; 28(9): 4845-4851, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466057

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a bone marrow malignancy having multiple molecular pathways driving its progress. In recent years, the main causes of AML considered all over the world are genetic variations in cancerous cells. The RUNX1 and FLT3 genes are necessary for the normal hematopoiesis and differentiation process of hematopoietic stem cells into mature blood cells, therefore they are the most common targets for point mutations resulting in AML. METHODS: We screened 32 CN-AML patients for FLT3-ITD (by Allele-specific PCR) and RUNX1 mutations (by Sanger sequencing). The FLT3 mRNA expression was assessed in all AML patients and its subgroups. RESULTS: Eight patients (25%) carried RUNX1 mutation (K83E) while three patients (9.37%) were found to have internal tandem duplications in FLT3 gene. The RUNX1 mutation data were correlated with clinical parameters and FLT3 gene expression profile. The RUNX1 mutations were observed to be significantly prevalent in older males. Moreover, RUNX1 and FLT3-mutated patients had lower complete remission rate, event-free survival rate, and lower overall survival rate than patients with wild-type RUNX1 and FLT3 gene. The RUNX1 and FLT3 mutant patients with up-regulated FLT3 gene expression showed even worse prognosis. Bradford Assay showed that protein concentration was down-regulated in RUNX1 and FLT3 mutants in comparison to RUNX1 and FLT3 wild-type groups. CONCLUSION: This study constitutes the first report from Pakistan reporting significant molecular mutation analysis of RUNX1 and FLT3 genes including FLT3 expression evaluation with follow-up. This provides an insight that aforementioned mutations are markers of poor prognosis but the study with a large AML cohort will be useful to further investigate their role in disease biology of AML.

3.
Saudi J Biol Sci ; 28(7): 3710-3719, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34220222

RESUMO

Pomegranate peels (PPW) as municipal waste is inexpensive biomass that could be a renewable source of sugars particularly rich in hemicellulosic contents. The subsequent conversion of available sugars in PPW can provide prospective strategy for cost-effective bioenergy production. In this study, an experimental setup based on CCD was implemented with the aim of bioconversion of biomass into bioethanol. The factors considered were Hydrochloric acid concentration (X1), the hydrolysis temperature (X2) and time (X3) for optimization with dilute Hydrochloric acid (HCl) saccharification. The present study investigates the optimised level of bioethanol synthesis from acid pre-treated PPW explained by RSM. Subsequently, three yeasts viz. Saccharomyces cerevisiae K7, Metschnikowia sp. Y31 and M. cibodasensis Y34 were utilized for fermentation of acid hydrolysed and detoxified feed stocks. Optimum values of reducing sugars 48.02 ± 0.02 (gL-1) and total carbohydrates 205.88 ± 0.13 (gL-1) were found when PPW was hydrolyzed with 1% HCl concentration at 100˚C of temperature for 30 min. Later on, fermentation of PPWH after detoxification with 2.5% activated charcoal. The significant ethanol (g ethanol/g of reducing sugars) yields after fermentation with Metschnikowia sp. Y31 and M. cibodasensis Y34 found to be 0.40 ± 0.03 on day 5 and 0.41 ± 0.02 on last day of experiment correspondingly. Saccharomyces cerevisiae K7 also produce maximum ethanol 0.40 ± 0.00 on last day of incubation utilizing the PPWH. The bioconversion of commonly available PPW into bioethanol as emphasize in this study could be a hopeful expectation and also cost-effective to meet today energy crisis.

4.
Saudi J Biol Sci ; 28(7): 3735-3740, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34220225

RESUMO

Rat sarcoma gene (RAS) holds great importance in pathogenesis of acute myeloid leukemia (AML). The activated mutations in Neuroblastoma rat sarcoma viral oncogene homolog (NRAS) and Kirsten rat sarcoma viral oncogene homolog (KRAS) confers proliferative and survival signals, deliberating numerous effects on overall survival and progression free survival in AML patients. In this study thirty one (31) blood samples of adult newly diagnosed AML patients were collected to identify possible incidence of mutations through amplification of KRAS (exon 1 and 2) and NRAS gene (exon 1 and 2) using polymerase chain reaction (PCR). Amplicons were then subjected to sequencing and were analyzed through Geneious Prime 2019. Five of thirty one (16.12%) patients had altered sites in either NRAS or KRAS. The NRAS mutations were observed in three AML patients (N = 3, 9.67%). A novel missense mutation NRAS-I36R (239 T > G) representing a substitution of single nucleotide basepair found in NRAS exon 1 while exon 2 was detected with heterozygous mutation NRAS-E63X (318G > T) and insertion (A), resulting in frameshift of the amino acid sequence and insertion of two nucleotide basepairs (TA) in two of the patients. KRAS mutations (N = 2, 6.45%) were found in exon 1 whereas no mutations in KRAS exon 2 were detected in our patient cohort. Mutation in KRAS Exon 1, KRAS-D30N (280G > A) was observed in two patients and one of them also had a novel heterozygous mutation KRAS-L16N (240G > C). In addition there was no statistically significant association of mutRAS gene of AML patients with several prognostic markers including age, gender, karyotyping, CD34 positivity, cytogenetic abnormalities, total leukocyte count, white blood cell count and French-American-British (FAB) classification. However, the presence of mutRAS gene were strongly associated (p = 0.001) with increased percentage of bone marrow blasts. The prevalence of mutations in correlation with clinical and hematological parameter is useful for risk stratification in AML patients.

5.
Asian Pac J Cancer Prev ; 21(12): 3517-3526, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369447

RESUMO

OBJECTIVE: BCR-ABL fusion oncogene is the hallmark of chronic myeloid leukemia (CML), causing genomic instability which leads to accumulation of mutations in BCR-ABL as well as other genes. BCR-ABL mutations are the cause of tyrosine kinase inhibitors (TKIs) resistance in CML. Recently, compound BCR-ABL mutations have been reported to resist all FDA approved TKIs. Therefore, finding novel compound BCR-ABL mutations can help and clinically manage CML. Therefore, our objective was to find out novel drug-resistant compound BCR-ABL mutations in CML and carry out their protein modelling studies. METHODOLOGY: Peripheral blood samples were collected from ten imatinib resistant CML patients receiving nilotinib treatment. BCR-ABL transcript mutations were investigated by employing capillary sequencing. Patient follow-up was carried out using European LeukemiaNet guidelines. Protein modeling  studies were carried out for new compound mutations using PyMol to see the effects of mutations at structural level. RESULTS: A novel compound mutation (K245N mutation along with G250W mutation) and previously known T351I utation was detected in two of the nilotinib resistance CML patients respectively while in the rest of 8 nilotinib responders, no resistant mutations were detected. Protein modelling studies indicated changes in BCR-ABL mutant protein which may have negatively impacted its binding with nilotinib leading to drug resistance. CONCLUSION: We report a novel nilotinib resistant BCR-ABL compound mutation (K245N along with G250W mutation) which impacts structural modification in BCR-ABL mutant protein leading to drug resistance. As compound mutations pose a new threat by causing resistance to all FDA approved tyrosine kinase inhibitors in BCR-ABL+ leukemias, our study opens a new direction for in vitro characterization of novel BCR-ABL compound mutations and their resistant to second  generation and third generation TKIs.


Assuntos
Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/genética , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Mutação , Adulto , Feminino , Seguimentos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Prognóstico , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia
6.
J Cancer ; 9(23): 4341-4345, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519338

RESUMO

The most frequently reported genetic aberration among polycythemia vera (PV) patients is a gain of function mutation V617F in exon 14 of Janus kinase 2 (JAK2) gene. However in many investigations, V617F negative PV patients have been reported to harbor mutations in JAK 2 exon 12. We investigated 24 patients with PV (diagnosed following 2016 WHO guidelines) to detect V617F mutation through allele specific PCR. The frequency of which was found to be 19/24 (79.2 %). Later on JAK2 exon 12 and 14 was amplified by conventional PCR in V617F negative patients and subjected to sequence analysis. A total of 03 mutated sites in exon 12 were detected in only two V617F-negative patients 2/5 (40%). All three substitutions were heterozygous i.e. F537F/I found in both patients and R528R/T, which is a novel mutation. In addition, one patient 1/5 (10%) manifested amino acid substitution V617A in JAK2 exon 14. Hematological parameters of individuals harboring mutations do not vary significantly than rest of the PV patients. Previous history and 2.3 years of follow-up studies reveal 15-year survival of V617F positive patients (n=19) to be 76%, while it is 94% for wild type V617 patients (n=05). Mean TLC of the patient cohort was 17.6± 9.1 x 109/L, mean platelet count was 552± 253 x 109/L, mean hemoglobin was 16.9± 3.2 g/dl, mean corpuscular volume (MCV) was 77.2± 13.0 fl and mean corpuscular hemoglobin (MCH) was 25.6± 3.9 pg. This is the very first attempt from Pakistan to screen JAK2-exon 12 mutations in PV patients. We further aim to investigate Jak2 exon 12 mutations in larger number of PV patients to assess their clinical relevance and role in disease onset, progression and transformation.

7.
Cancer Biol Ther ; 18(4): 214-221, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278078

RESUMO

BCR-ABL kinase domain (KD) mutations are well known for causing resistance against tyrosine kinase inhibitors (TKIs) and disease progression in chronic myeloid leukemia (CML). In recent years, compound BCR-ABL mutations have emerged as a new threat to CML patients by causing higher degrees of resistance involving multiple TKIs, including ponatinib. However, there are limited reports about association of compound BCR-ABL mutations with disease progression in imatinib (IM) sensitive CML patients. Therefore, we investigated presence of ABL-KD mutations in chronic phase (n = 41), late chronic phase (n = 33) and accelerated phase (n = 16) imatinib responders. Direct sequencing analysis was used for this purpose. Eleven patients (12.22%) in late-CP CML were detected having total 24 types of point mutations, out of which 8 (72.72%) harbored compound mutated sites. SH2 contact site mutations were dominant in our study cohort, with E355G (3.33%) being the most prevalent. Five patients (45%) all having compound mutated sites, progressed to advanced phases of disease during follow up studies. Two novel silent mutations G208G and E292E/E were detected in combination with other mutants, indicating limited tolerance for BCR-ABL1 kinase domain for missense mutations. However, no patient in early CP of disease manifested mutated ABL-KD. Occurrence of mutations was found associated with elevated platelet count (p = 0.037) and patients of male sex (p = 0.049). The median overall survival and event free survival of CML patients (n = 90) was 6.98 and 5.8 y respectively. The compound missense mutations in BCR-ABL kinase domain responsible to elicit disease progression, drug resistance or disease relapse in CML, can be present in yet Imatinib sensitive patients. Disease progression observed here, emphasizes the need of ABL-KD mutation screening in late chronic phase CML patients for improved clinical management of disease.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Recidiva Local de Neoplasia/genética , Inibidores de Proteínas Quinases/farmacologia , Adolescente , Adulto , Antineoplásicos/uso terapêutico , Criança , Análise Mutacional de DNA , Progressão da Doença , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Mesilato de Imatinib/uso terapêutico , Estimativa de Kaplan-Meier , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/mortalidade , Contagem de Plaquetas , Mutação Puntual , Inibidores de Proteínas Quinases/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...