Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21495, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513772

RESUMO

This work proposes the double quantum dot (DQD)-metal nanoparticle (MNP) hybrid system for a high energy absorption rate. The structure is modeled using density matrix equations that consider the interaction between excitons and surface plasmons. The wetting layer (WL)-DQD transitions are considered, and the orthogonalized plane wave (OPW) between these transitions is considered. The DQD energy states and momentum calculations with OPW are the figure of merit recognizing this DQD-MNP work. The results show that at the high pump and probe application, the total absorption rate [Formula: see text] of the DQD-MNP hybrid system is increased by reducing the distance between DQD-MNP. The high [Formula: see text] obtained may relate to two reasons: first, the WL washes out modes other than the condensated main mode. Second, the high flexibility of manipulating DQD states compared to QD states results in more optical properties for DQD. The [Formula: see text] is increased at a small MNP radius on the contrary to the [Formula: see text] which is increased at a wider MNP radius. Under high tunneling, a broader blue shift in the [Formula: see text] due to the destructive interference between fields is seen and the synchronization between [Formula: see text] and [Formula: see text] is destroyed. [Formula: see text] for the DQD-MNP is increased by six orders while [Formula: see text] is by eight orders compared to the single QD-MNP hybrid system. The high absorption rate of the DQD-MNP hybrid system comes from the transition possibilities and flexibility of choosing the transitions in the DQD system, which strengthens the transitions and increases the linear and nonlinear optical properties. This will make the DQD-MNP hybrid systems preferable to QD-MNP systems.

2.
Appl Opt ; 55(34): 9866-9874, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27958482

RESUMO

Second-order nonlinear susceptibility (SONS) in a ladder-plus-Y double quantum dot structure was modeled and then studied numerically under the application of an electric field. The density matrix theory was used to formulate the system while the orthogonalized plane waves for wetting layer-quantum dot (WL-QD) were considered to state the momentum matrix elements for this system. It is found that the momenta follow the smallest energy difference between states with an obvious overlap of the mediated states. Since WL-QD momenta are small, neglecting WL gives high SONS. Millimeter waves are predicted, and a huge SONS can be obtained by the application of more optical fields, which is important in medical and biological applications. The possibility of changing light speed between subluminal and superluminal was predicted here. This opens the way for many applications like multichannel waveguide-multichannel quantum information processing, real quality imaging, and temporal clock.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...