Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 897: 165394, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437630

RESUMO

Leaf functional traits (LFTs) of desert plants are responsive, adaptable and highly plastic to their environment. However, the macroscale variation in LFTs and driving factors underlying this variation remain unclear, especially for desert plants. Here, we measured eight LFTs, including leaf carbon concentration (LCC), leaf nitrogen concentration (LNC), leaf phosphorus concentration (LPC), specific leaf area (SLA), leaf dry matter content (LDMC), leaf mass per area (LMA), leaf thickness (LTH) and leaf tissue density (LTD) across 114 sites along environmental gradient in the drylands of China and in Guazhou Common Garden and evaluated the effect of environment and phylogeny on the LFTs. We noted that for all species, the mean values of LCC, LNC, LPC, SLA, LDMC, LMA, LTH and LTD were 384.62 mg g-1, 19.91 mg g-1, 1.12 mg g-1, 79.62 cm2 g-1, 0.74 g g-1, 237.39 g m-2, 0.38 mm and 0.91 g cm-3, respectively. LFTs exhibited significant geographical variations and the LNC, LMA and LTH in the plants of Guazhou Common Garden were significantly higher than the field sites in the drylands of China. LDMC and LTD of plants in Guazhou Common Garden were, however, considerably lower than those in the drylands of China. LCC, LPC, LTH and LTD differed significantly among different plant lifeforms, while LNC, SLA, LDMC and LMA didn't show significant variations. We found that the environmental variables explained higher spatial variations (3.6-66.3 %) in LFTs than the phylogeny (1.8-54.2 %). The LCC significantly increased, while LDMC and LTD decreased with increased temperature and reduced precipitation. LPC, LDMC, LMA, and LTD significantly increased, while SLA and LTH decreased with increased aridity. However, leaf elements were not significantly correlated with soil nutrients. The mean annual precipitation was a key factor controlling variations in LFTs at the macroscale in the drylands of China. These findings will provide new insights to better understand the response of LFTs and plants adaptation along environmental gradient in drylands, and will serve as a reference for studying biogeographic patterns of leaf traits.


Assuntos
Plantas , Solo , Fenótipo , Geografia , China , Fósforo , Carbono , Folhas de Planta
2.
BMC Plant Biol ; 23(1): 266, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37202776

RESUMO

BACKGROUND: Plants accomplish multiple functions by the interrelationships between functional traits. Clarifying the complex relationships between plant traits would enable us to better understand how plants employ different strategies to adapt to the environment. Although increasing attention is being paid to plant traits, few studies focused on the adaptation to aridity through the relationship among multiple traits. We established plant trait networks (PTNs) to explore the interdependence of sixteen plant traits across drylands. RESULTS: Our results revealed significant differences in PTNs among different plant life-forms and different levels of aridity. Trait relationships for woody plants were weaker, but were more modularized than for herbs. Woody plants were more connected in economic traits, whereas herbs were more connected in structural traits to reduce damage caused by drought. Furthermore, the correlations between traits were tighter with higher edge density in semi-arid than in arid regions, suggesting that resource sharing and trait coordination are more advantageous under low drought conditions. Importantly, our results demonstrated that stem phosphorus concentration (SPC) was a hub trait correlated with other traits across drylands. CONCLUSIONS: The results demonstrate that plants exhibited adaptations to the arid environment by adjusting trait modules through alternative strategies. PTNs provide a new insight into understanding the adaptation strategies of plants to drought stress based on the interdependence among plant functional traits.


Assuntos
Aclimatação , Plantas , Adaptação Fisiológica , Clima Desértico , China , Folhas de Planta/química
3.
Front Plant Sci ; 14: 1143442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938005

RESUMO

Determining response patterns of plant leaf elements to environmental variables would be beneficial in understanding plant adaptive strategies and in predicting ecosystem biogeochemistry processes. Despite the vital role of microelements in life chemistry and ecosystem functioning, little is known about how plant microelement concentrations, especially their bioconcentration factors (BCFs, the ratio of plant to soil concentration of elements), respond to large-scale environmental gradients, such as aridity, soil properties and anthropogenic activities, in drylands. The aim of the present study was to fill this important gap. We determined leaf microelement BCFs by measuring the concentrations of Mn, Fe, Ni, Cu and Zn in soils from 33 sites and leaves of 111 plants from 67 species across the drylands of China. Leaf microelement concentrations were maintained within normal ranges to satisfy the basic requirements of plants, even in nutrient-poor soil. Aridity, soil organic carbon (SOC) and electrical conductivity (EC) had positive effects, while soil pH had a negative effect on leaf microelement concentrations. Except for Fe, aridity affected leaf microelement BCFs negatively and indirectly by increasing soil pH and SOC. Anthropogenic activities and soil clay contents had relatively weak impacts on both leaf microelement concentrations and BCFs. Moreover, leaf microelement concentrations and BCFs shifted with thresholds at 0.89 for aridity and 7.9 and 8.9 for soil pH. Woody plants were positive indicator species and herbaceous plants were mainly negative indicator species of leaf microelement concentrations and BCFs for aridity and soil pH. Our results suggest that increased aridity limits the absorption of microelements by plant leaves and enhances leaf microelement concentrations. The identification of indicator species for the response of plant microelements to aridity and key soil characteristics revealed that woody species in drylands were more tolerant to environmental changes than herbaceous species.

4.
Chemosphere ; 318: 137924, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682633

RESUMO

Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.


Assuntos
Ecossistema , Solo , Solo/química , Microbiologia do Solo , Plantas , Mudança Climática
5.
Environ Pollut ; 318: 120863, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526056

RESUMO

Pearl millet (Pennisetum glaucum L.) is a highly nutritive-value summer-annual forage crop used for hay, silage, grazing, and green chop. However, abiotic stresses including salinity negatively affect its growth and productivity. Furthermore, the nanotechnology is attaining greater consideration to reduce the impact of environmental stresses in plants. In the present study, transcriptome responses of silver nanoparticles (AgNPs) in pearl millet under salinity were investigated. The treatments were given as Control, NaCl (250 mM), AgNPs (20 mg/L), and NaCl + AgNPs to pearl millet seedlings after thirteen days of seed sowing. After 1 h of given treatments, leaf samples were collected and subjected to physio-chemical examination and transcriptome analyses. Salt stress increased the hydrogen peroxide (H2O2), malondialdehyde (MDA) content, and proline as compared to other treatments. In addition, the combined applications of NaCl + AgNPs ameliorated the oxidative damage by increasing antioxidant enzymes activities including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, RNA sequencing data showed 6016 commonly annotated Differentially Expressed Transcripts (DETs) among various treated combinations. Among them, 427 transcripts were upregulated, and 136 transcripts were downregulated at nanoparticles vs control, 1469 upregulated and 1182 downregulated at salt vs control, 494 upregulated and 231 downregulated at salt + nanoparticles vs control, 783 upregulated and 523 downregulated at nanoparticles vs salt. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that Mitogen-activated protein kinase (MAPK) signaling pathway, biosynthesis of secondary metabolites, and plant hormonal signal transduction pathway were the enriched among all identified pathways. In addition, Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) showed that salinity up regulated the relative expression of DETs in pearl millet while, AgNPs optimized their expression that are associated with various molecular and metabolic functions. Overall, AgNPs treatments effectively improved the morphology, physiology, biochemistry, and gene expression pattern under salinity which could be attributed to positive impacts of AgNPs on pearl millet.


Assuntos
Nanopartículas Metálicas , Pennisetum , Pennisetum/genética , Pennisetum/metabolismo , Prata/toxicidade , Prata/metabolismo , Nanopartículas Metálicas/toxicidade , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/toxicidade , Cloreto de Sódio/metabolismo , Estresse Salino , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Antioxidantes/metabolismo
6.
Environ Sci Pollut Res Int ; 29(60): 89823-89833, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344893

RESUMO

Nanotechnology is one of the promising techniques and shares wide ranges of applications almost in every field of life. Nanomaterials are getting continuous attractions due to specific physical and chemical properties and being applied as multifunctional material. The use of nanomaterials/nanoparticles in agriculture sector for crop improvement and protection against various environmental threats have attained greater significance. Size and nature of nanoparticles, mode of application, environmental conditions, rhizospheric and phyllospheric environment, and plant species are major factors that influence the action of nanoparticles. The mode or method of nanoparticle applications to plants is attaining greater attentions. Recently, different methods for nanoparticle applications (seed priming, foliar, and root application) are being used to improve crop growth. It is of quite worth that which method is suitable for nanoparticle application, and how nanoparticles can possibly translocate to various plant tissues from root to shoot or vice versa. These information's are poorly understood and need more investigations to explore the comprehensive mechanism by which nanoparticles make their possible entry through different plant organs and how they transport to regulate various physiological and molecular functions in plant cells. Therefore, this study comprehensively provides the knowledge of nanoparticles uptake via seed priming, foliar exposure, and root application, and their possible translocation mechanism within plants influenced by various factors that has not clearly presented. This study will provide new insights to find out an actual uptake and translocation mechanism of nanoparticles that may help researchers to develop nanoparticle-based new strategies for plants to cope with various environmental challenges. This study also focuses on different soil factors or above ground factors that are involved in nanoparticles uptake and translocation and ultimately their functioning in plants.


Assuntos
Nanotecnologia , Projetos de Pesquisa , Sementes
7.
J Plant Physiol ; 279: 153828, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252399

RESUMO

Anthocyanins can help plants adapt and resist adverse environments and have important nutritional and medicinal effects on human beings. However, how environmental factors affect the anthocyanins accumulation of plants and how to improve the anthocyanins content of plants in different soils needs further exploration. Hence, this study aimed to investigate the effects of environmental factors on the accumulation of cyanidin, petunidin, malvidin, and delphinidin in the fruits of Lycium ruthenicum in sandy desert grassland (SS), gravel desert grassland (GD), and saline-alkali desert grassland (SD) in the lower reaches of the Shiyang River Basin. The variable importance screened the key environmental factors affecting anthocyanin accumulation in projection (VIP) and multiple stepwise regressions. The structural equation model (SEM) was established to understand how the climate and soil factors affect the total anthocyanin accumulation. For establishing soil nutrient optimization schemes by partial least squares regression (PLS) and the simplex algorithm used to improve the anthocyanin content in different types of desert grassland. In SS, electrical conductivity (EC) and microbial biomass carbon (SMBC) showed highly significant and positive effects on the content of total anthocyanin, cyanidin, and petunidin. In GD, soil moisture and microbial biomass nitrogen (SNBN) significantly negatively affected total anthocyanin content. In SD, catalase (CAT), phosphatase (PHO), and total potassium (TK) had the greatest impact on total anthocyanin content. It is indicated that the targeted improvement measures are necessary to increase anthocyanin content in the fruit of Lycium ruthenicum.


Assuntos
Antocianinas , Lycium , Humanos , Antocianinas/química , Lycium/química , Frutas , Pradaria , Solo
8.
Sci Total Environ ; 853: 158610, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36089030

RESUMO

The heat waves (HW) will be more frequent and intense in the future with increased human activity and uncertain implications for ecosystem carbon fluxes. The semi-arid Eurasian grassland is sensitive to climate change and under frequent HWs attacks. Mowing as one of the most common human practices in this region, combining with HW can have comprehensive effects on plant communities, biomass, and nutrient cycling. Hence, a 3-year (2019-2021) field manipulation experiment was conducted to assess how mowing influenced the carbon cycling under HWs, and the interactions between HWs and mowing on carbon fluxes at the community and ecosystem levels in a Eurasian meadow steppe. Over the three years, HW significantly reduced net ecosystem CO2 exchange (NEE) and gross ecosystem production (GEP) by 28 % and 8 % (P < 0.05), respectively, whereas ecosystem respiration (Re) did not show significant changes. Moderate mowing (stubble height was set at 6-8 cm) for harvest effectively mitigated ecosystem sensitivity to HWs and significantly increased ecosystem carbon fluxes (NEE, Re, and GEP), biomass and the number of species. Mowing reduced the negative impact of HWs on ecosystem carbon fluxes by about 15 % compared to HWs alone, contributing to the invasion of species such as Thalictrum squarrosum and Vicia amoena, and increased the indirect effect of HW on NEE in the structural equation model. In addition, the higher soil water content (SWC) was another effective way to reduce the impact of HWs. Therefore, mowing and higher SWC would be effective ways to counteract the negative effects of HWs on carbon fluxes in future grassland management.


Assuntos
Ecossistema , Pradaria , Humanos , Dióxido de Carbono/química , Temperatura Alta , Ciclo do Carbono , Solo , Água/química , Carbono/química
9.
Environ Microbiol ; 24(11): 5483-5497, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35706137

RESUMO

Archaea represent a diverse group of microorganisms often associated with extreme environments. However, an integrated understanding of biogeographical patterns of the specialist Haloarchaea and the potential generalist ammonia-oxidizing archaea (AOA) across large-scale environmental gradients remains limited. We hypothesize that niche differentiation determines their distinct distributions along environmental gradients. To test the hypothesis, we use a continental-scale research network including 173 dryland sites across northern China. Our results demonstrate that Haloarchaea and AOA dominate topsoil archaeal communities. As hypothesized, Haloarchaea and AOA show strong niche differentiation associated with two ecosystem types mainly found in China's drylands (i.e. deserts vs. grasslands), and they differ in the degree of habitat specialization. The relative abundance and richness of Haloarchaea are higher in deserts due to specialization to relatively high soil salinity and extreme climates, while those of AOA are greater in grassland soils. Our results further indicate a divergence in ecological processes underlying the segregated distributions of Haloarchaea and AOA. Haloarchaea are governed primarily by environmental-based processes while the more generalist AOA are assembled mostly via spatial-based processes. Our findings add to existing knowledge of large-scale biogeography of topsoil archaea, advancing our predictive understanding on changes in topsoil archaeal communities in a drier world.


Assuntos
Archaea , Ecossistema , Archaea/genética , Microbiologia do Solo , Amônia , Solo , Oxirredução , Nitrificação , Filogenia
10.
J Plant Physiol ; 272: 153671, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35381492

RESUMO

Leaf traits of global plants reveal the fundamental trade-offs in plant resource acquisition to conservation strategies. However, which leaf traits are consistent, converged, or diverged among herbs, shrubs, and subshrubs in an arid environment remains unclear. In the present study, we evaluated the trade-offs in six leaf functional traits (LFTs): leaf fresh mass (LFM), leaf dry mass (LDM), leaf dry matter content (LDMC), leaf area (LA), specific leaf area (SLA), and leaf thickness (LTh) of 37 desert plant species. LFTs differed between different plant life forms; LFM, LDM, and LA were slightly higher in herbs, LDMC and LTh in shrubs, and SLA in subshrubs. Conversely, the correlations among LFTs were inconsistent in different life forms, which may indicate their different adaptation strategies in an arid environment. Legumes and C3 plants exhibited slightly higher LDMC, LA, and SLA than non-legumes and C4 plants, whereas non-legumes and C4 plants showed higher (nonsignificant) LFM, LDM, and LTh than legumes and C3 plants. A significant phylogenetic signal (PS) and maximum K-value were found for SLA (K = 0.32). LFTs exhibited convergent and divergent variations among different life forms. However, these variations in LFTs were not influenced by phylogeny. Together, these findings increase our understanding of the variations in ecological adaptations of desert plants as well as adaption strategies of different life forms in an arid environment.


Assuntos
Folhas de Planta , Plantas , Aclimatação , Fenótipo , Filogenia , Folhas de Planta/genética
11.
Nat Commun ; 12(1): 5350, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504089

RESUMO

Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification.


Assuntos
Biodiversidade , Clima Desértico , Fungos/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo , Solo/química , China , Ecossistema , Fungos/classificação , Fungos/crescimento & desenvolvimento , Geografia , Concentração de Íons de Hidrogênio , Modelos Teóricos , Plantas/classificação , Microbiologia do Solo , Especificidade da Espécie , Água/metabolismo
12.
Plants (Basel) ; 10(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801576

RESUMO

Plants need water and energy for their growth and reproduction. However, how water and energy availability influence dryland plant diversity along the aridity gradient in water-limited regions is still lacking. Hence, quantitative analyses were conducted to evaluate the relative importance of water and energy to dryland plant diversity based on 1039 quadrats across 184 sites in China's dryland. The results indicated that water availability and the water-energy interaction were pivotal to plant diversity in the entire dryland and consistent with the predictions of the water-energy dynamic hypothesis. The predominance of water limitation on dryland plant diversity showed a weak trend with decreasing aridity, while the effects of energy on plants were found to be significant in mesic regions. Moreover, the responses of different plant lifeforms to water and energy were found to vary along the aridity gradient. In conclusion, the study will enrich the limited knowledge about the effects of water and energy on plant diversity (overall plants and different lifeforms) in the dryland of China along the aridity gradient.

13.
Polymers (Basel) ; 12(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238571

RESUMO

In this paper we designed greener rubber nanocomposites exhibiting high crosslinking density, and excellent mechanical and thermal properties, with a potential application in technical fields including high-strength and heat-resistance products. Herein 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) ionic liquid was combined with silane coupling agent to formulate the nanocomposites. The impact of [EMIM]OAc on silica dispersion in a nitrile rubber (NBR) matrix was investigated by a transmission electron microscope and scanning electron microscopy. The combined use of the ionic liquid and silane in an NBR/silica system facilitates the homogeneous dispersion of the silica volume fraction (φ) from 0.041 to 0.177 and enhances crosslinking density of the matrix up to three-fold in comparison with neat NBR, and also it is beneficial for solving the risks of alcohol emission and ignition during the rubber manufacturing. The introduction of ionic liquid greatly improves the mechanical strength (9.7 MPa) with respect to neat NBR vulcanizate, especially at high temperatures e.g., 100 °C. Furthermore, it impacts on rheological behaviors of the nanocomposites and tends to reduce energy dissipation for the vulcanizates under large amplitude dynamic shear deformation.

14.
Plants (Basel) ; 9(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759791

RESUMO

Convergence is commonly caused by environmental filtering, severe climatic conditions and local disturbance. The basic aim of the present study was to understand the pattern of leaf traits across diverse desert plant species in a common garden, in addition to determining the effect of plant life forms (PLF), such as herb, shrub and subshrub, phylogeny and soil properties on leaf traits. Six leaf traits, namely carbon (C), nitrogen (N), phosphorus (P), potassium (K), δ13C and leaf water potential (LWP) of 37 dominant desert plant species were investigated and analyzed. The C, N, K and δ13C concentrations in leaves of shrubs were found higher than herbs and subshrubs; however, P and LWP levels were higher in the leaves of subshrubs following herbs and shrubs. Moreover, leaf C showed a significant positive correlation with N and a negative correlation with δ13C. Leaf N exhibited a positive correlation with P. The relationship between soil and plant macro-elements was found generally insignificant but soil C and N exhibited a significant positive correlation with leaf P. Taxonomy showed a stronger effect on leaf C, N, P and δ13C than soil properties, explaining >50% of the total variability. C3 plants showed higher leaf C, N, P, K and LWP concentration than C4 plants, whereas C4 plants had higher δ13C than C3 plants. Legumes exhibited higher leaf C, N, K and LWP than nonlegumes, while nonlegumes had higher P and δ13C concentration than legumes. In all the species, significant phylogenetic signals (PS) were detected for C and N and nonsignificant PS for the rest of the leaf traits. In addition, these phylogenetic signals were found lower (K-value < 1), and the maximum K-value was noted for C (K = 0.35). The plants of common garden evolved and adapted themselves for their survival in the arid environment and showed convergent variations in their leaf traits. However, these variations were not phylogenetics-specific. Furthermore, marks of convergence found in leaf traits of the study area were most likely due to the environmental factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...