Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1192583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601760

RESUMO

Introduction: The antiviral activity of different mutagens against single-stranded RNA viruses is well documented; however, their activity on the replication of double-stranded RNA viruses remains unexplored. This study aims to investigate the effect of different antivirals on the replication of a chicken embryo fibroblast-adapted Infectious Bursal Disease virus, FVSKG2. This study further explores the antiviral mechanism utilized by the most effective anti-IBDV agent. Methods: The cytotoxicity and anti-FVSKG2 activity of different antiviral agents (ribavirin, 5-fluorouracil, 5-azacytidine, and amiloride) were evaluated. The virus was serially passaged in chicken embryo fibroblasts 11 times at sub-cytotoxic concentrations of ribavirin, 5-fluorouracil or amiloride. Further, the possible mutagenic and non-mutagenic mechanisms utilized by the most effective anti-FVSKG2 agent were explored. Results and Discussion: Ribavirin was the least cytotoxic on chicken embryo fibroblasts, followed by 5-fluorouracil, amiloride and 5-azacytidine. Ribavirin inhibited the replication of FVSKG2 in chicken embryo fibroblasts significantly at concentrations as low as 0.05 mM. The extinction of FVSKG2 was achieved during serial passage of the virus in chicken embryo fibroblasts at ≥0.05 mM ribavirin; however, the emergence of a mutagen-resistant virus was not observed until the eleventh passage. Further, no mutation was observed in 1,898 nucleotides of the FVSKG2 following its five passages in chicken embryo fibroblasts in the presence of 0.025 mM ribavirin. Ribavarin inhibited the FVSKG2 replication in chicken embryo fibroblasts primarily through IMPDH-mediated depletion of the Guanosine Triphosphate pool of cells. However, other mechanisms like ribavirin-mediated cytokine induction or possible inhibition of viral RNA-dependent RNA polymerase through its interaction with the enzyme's active sites enhance the anti-IBDV effect. Ribavirin inhibits ds- RNA viruses, likely through IMPDH inhibition and not mutagenesis. The inhibitory effect may, however, be augmented by other non-mutagenic mechanisms, like induction of antiviral cytokines in chicken embryo fibroblasts or interaction of ribavirin with the active sites of RNA-dependent RNA polymerase of the virus.

2.
Ultrason Sonochem ; 82: 105900, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34972072

RESUMO

This research includes production of chitosan nanocapsules through ionic gelation with sodium bisulfate for nanoencapsulation of hydroxytyrosol (HT) using ultrasonication in tandem. The resulting nanocapsules encapsulating HT were analyzed for particle size, ζ-potential, packaging characteristics, FESEM, ATR-FTIR, XRD, DSC, in vitro release, antioxidant potential and antiproliferative properties. The nanocapsules (size 119.50-365.21 nm) were spherical to irregular shaped with positive ζ-potential (17.50-18.09 mV). The encapsulation efficiency of 5 mg/g HT (HTS1) and 20 mg/g HT (HTS2) was 77.13% and 56.30%, respectively. The nanocapsules were amorphous in nature with 12.34% to 15.48% crystallinity and crystallite size between 20 nm and 27 nm. Formation of nanocapsules resulted in increasing the glass transition temperature. HTS2 delivered 67.12% HT (HTS1 58.89%) at the end of the simulated gastrointestinal digestion. The nanoencapsulated HT showed higher antioxidant and antiproliferative (against A549 and MDA-MB-231 cancer cell lines) properties than the free HT.


Assuntos
Ultrassom , Antioxidantes/farmacologia , Quitosana , Nanocápsulas , Tamanho da Partícula , Álcool Feniletílico/análogos & derivados , Sulfatos
3.
Front Vet Sci ; 9: 1116400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713875

RESUMO

Infectious bursal disease virus is the causative agent of infectious bursal disease (Gumboro disease), a highly contagious immunosuppressive disease of chicken with a substantial economic impact on small- and large-scale poultry industries worldwide. Currently, live attenuated vaccines are widely used to control the disease in chickens despite their issues with safety (immunosuppression and bursal atrophy) and efficiency (breaking through the maternally-derived antibody titer). To overcome the drawbacks, the current study has, for the first time, attempted to construct a computational model of a multiepitope based vaccine candidate against infectious bursal disease virus, which has the potential to overcome the safety and protection issues found in the existing live-attenuated vaccines. The current study used a reverse vaccinology based immunoinformatics approach to construct the vaccine candidate using major and minor capsid proteins of the virus, VP2 and VP3, respectively. The vaccine construct was composed of four CD8+ epitopes, seven CD4+ T-cell epitopes, 11 B-cell epitopes and a Cholera Toxin B adjuvant, connected using appropriate flexible peptide linkers. The vaccine construct was evaluated as antigenic with VaxiJen Score of 0.6781, immunogenic with IEDB score of 2.89887 and non-allergenic. The 55.64 kDa construct was further evaluated for its physicochemical characteristics, which revealed that it was stable with an instability index of 16.24, basic with theoretical pI of 9.24, thermostable with aliphatic index of 86.72 and hydrophilic with GRAVY score of -0.256. The docking and molecular dynamics simulation studies of the vaccine construct with Toll-like receptor-3 revealed fair structural interaction (binding affinity of -295.94 kcal/mol) and complex stability. Further, the predicted induction of antibodies and cytokines by the vaccine construct indicated the possible elicitation of the host's immune response against the virus. The work is a significant attempt to develop next-generation vaccines against the infectious bursal disease virus though further experimental studies are required to assess the efficacy and protectivity of the proposed vaccine candidate in vivo.

4.
Mater Sci Eng C Mater Biol Appl ; 118: 111547, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255098

RESUMO

Cellulose nanofibers, which are troublesome to spin into fibers, can be easily fabricated by post-regeneration of its acetate-derived threads. Cellulose is a natural polymer; it enjoys better biocompatibility, cellular mimicking, and hydrophilic properties than its proportionate analog. Herein, we regenerated acetate-free nanofibers by alkaline de-acetylation of as-spun nanofibers. The resultant cellulose nanofibers previously loaded with hydroxyapatite (HAp) were immobilized using silver (Ag) nanoparticles (NPs) by reduction of adsorbed Ag ions on using sodium borohydride. These amalgamated nanofibers were characterized for SEM, EDX, TEM, FTIR, and hydrophilicity tests revealing the existence of both HAp and Ag NPs in/on the nanofiber scaffolds. The de-acetylation of composite nanofibers resulted in spontaneous hydrophilicity. These nanofibers were cytocompatible, as resolved by MTT assay conducted on chicken embryo fibroblasts. The SEM of the samples after cell culture revealed that these composites allowed a proliferation of the fibroblasts over and within the nanofiber network, and increased concentration of HAp levitated the excessive of apatite formation as well as increased cell growth. The antimicrobial activity of these nanofibers was assessed on E. coli (BL21) and S. aureus, suggesting the potential of de-acetylated nanofibers to restrain bacterial growth. The degradation study for 10, 30, and 60 days indicated degradation of the fibers much is faster in enzymes as compared to degradation in PBS. The results certify that these nanofibers possess enormous potential for soft and hard tissue engineering besides their antimicrobial properties.


Assuntos
Nanofibras , Nanopartículas , Animais , Celulose/análogos & derivados , Embrião de Galinha , Durapatita , Escherichia coli , Prata/farmacologia , Staphylococcus aureus , Engenharia Tecidual
5.
J Biomed Mater Res A ; 108(4): 947-962, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31894888

RESUMO

In the present work, a novel strategy was explored to fabricate nanofiber scaffolds consisting of cellulose assimilated with titanium dioxide (TiO2 ) and silver (Ag) nanoparticles (NPs). The concentration of the TiO2 NPs in the composite was adjusted to 1.0, 1.5, and 2.0 wt % with respect to polymer concentration used for the electrospinning of colloidal solutions. The fabricated composite scaffolds were dispensed to alkaline deacetylation using 0.05 M NaOH to remove the acetyl groups in order to generate pure cellulose nanofibers containing TiO2 NPs. Moreover, to augment our nanofiber scaffolds with antibacterial activity, the in situ deposition approach of using Ag NPs was utilized with varied molar concentrations of 0.14, 0.42, and 0.71 M. The physicochemical properties of the nanofibers were identified by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and contact angle meter studies. This demonstrated the presence of both TiO2 and Ag NPs and complete deacetylation of nanofibers. The antibacterial efficiency of the nanofibers was scrutinized against Escherichia coli and Staphylococcus aureus, revealing proper in situ deposition of Ag NPs and confirming the nanofibers are antibacterial in nature. The biocompatibility of the scaffolds was accustomed using chicken embryo fibroblasts, which confirmed their potential role to be used as wound-healing materials. Furthermore, the fabricated scaffolds were subjected to analysis in simulated body fluid at 37°C to induce mineralization for future osseous tissue integration. These results indicate that fabricated composite nanofiber scaffolds with multifunctional characteristics will have a highest potential as a future candidate for promoting new tissues artificially.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Celulose/farmacologia , Nanofibras/química , Prata/farmacologia , Engenharia Tecidual , Alicerces Teciduais/química , Titânio/farmacologia , Acetilação/efeitos dos fármacos , Animais , Calcificação Fisiológica/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Durapatita/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Nanofibras/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Int J Pharm ; 569: 118590, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31381988

RESUMO

Synthetic polymers, especially those with biocompatible and biodegradable characteristics, may offer effective alternatives for the treatment of severe wounds and burn injuries. Ideally, the scaffold material should induce as little pain as possible, enable quick healing, and direct the growth of defect-free epidermal cells. The best material with this multifunctionality, such as self-healing dressings, should be hydrophilic and have uninterrupted and direct contact with the damaged tissue. In addition, the ideal biomaterial should have some antibacterial properties. In this study, a novel technique was used to fabricate composite electrospun wound-dressing nanofibers composed of polyurethane encasing lavender oil and silver (Ag) nanoparticles (NPs). After electrospinning, the fabricated nanofibers were identified using various techniques, including scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An abundance of Ag NPs in the fibers decreased the diameter of the fibers while increased concentration of the lavender oil increased the diameter. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) studies showed the presence of the lavender oil and Ag NPs in the fiber dressings. The Ag NPs and lavender oil improved the hydrophilicity of the nanofibers and ensured the proliferation of chicken embryo fibroblasts cultured in-vitro on these fiber dressings. The antibacterial efficiency of the nanofiber dressings was investigated using E. coli and S. aureus, which yielded zones of inhibition of 16.2 ±â€¯0.8 and 5.9 ±â€¯0.5 mm, respectively, indicating excellent bactericidal properties of the dressings. The composite nanofiber dressings have great potential to be used as multifunctional wound dressings; offering protection against external agents as well as promoting the regeneration of new tissue.


Assuntos
Antibacterianos/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Nanofibras/administração & dosagem , Óleos Voláteis/administração & dosagem , Óleos de Plantas/administração & dosagem , Poliuretanos/administração & dosagem , Prata/administração & dosagem , Animais , Bandagens , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Fibroblastos/efeitos dos fármacos , Lavandula , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...