Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(8): 1984-1996, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38619301

RESUMO

In this study, gold nanoparticles (AuNPs) were bioreduced from Ajuga bracteosa, a medicinal herb known for its therapeutic properties against various diseases. Different fractions of the plant extract were used, including the methanolic fraction (ABMF), the n-hexane fraction (ABHF), the chloroform fraction (ABCF), and the aqueous extract for AuNPs synthesis. The characterization of AuNPs was performed using UV-Vis spectrophotometry, FT-IR, XRD, EDX, and TEM. UV-Vis spectroscopy confirmed the formation of AuNPs, with peaks observed at 555 nm. FT-IR analysis indicated strong capping of phytochemicals on the surface of AuNPs, which was supported by higher total phenolic contents (TPC) and total flavonoid contents (TFC) in AuNPs. XRD results showed high crystallinity and a smaller size distribution of AuNPs. TEM analysis revealed the spherical shape of AuNPs, with an average size of 29 ± 10 nm. The biologically synthesized AuNPs exhibited superior antibacterial, antioxidant, and cytotoxic activities compared to the plant extract fractions. The presence of active biomolecules in A. bracteosa, such as neoclerodan flavonol glycosides, diterpenoids, phytoecdysone, and iridoid glycosides, contributed to the enhanced biological activities of AuNPs. Overall, this research highlights the potential of A. bracteosa-derived AuNPs for various biomedical applications due to their remarkable therapeutic properties and effective capping by phytochemicals. RESEARCH HIGHLIGHTS: This research underscores the growing significance of herbal medicine in contemporary healthcare by exploring the therapeutic potential of Ajuga bracteosa and gold nanoparticles (AuNPs). The study highlights the notable efficacy of A. bracteosa leaf extracts and AuNPs in treating bacterial infections, demonstrating their bactericidal effects on a range of strains. The anti-inflammatory properties of plant extracts and nanoparticles are evidenced through paw edema method suggesting their applicability in managing inflammatory conditions. These findings position A. bracteosa and AuNPs as potential candidates for alternative and effective approaches to modern medication.


Assuntos
Ajuga , Antibacterianos , Antioxidantes , Ouro , Nanopartículas Metálicas , Extratos Vegetais , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Ajuga/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Transmissão , Animais , Humanos , Flavonoides/química , Tamanho da Partícula
2.
Biomed Mater ; 16(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075764

RESUMO

Impaired diabetic wounds are one of the major pathophysiological complications caused by persistent microbial infections, prolonged inflammation, and insufficient angiogenic responses. Here, we report the development of nitric-oxide (NO) -releasing S-nitroso-N-acetyl-penicillamine (SNAP) -loaded chitosan/polyvinyl-alcohol hydrogel and its efficacy in enhancing the wound-healing potential of bone marrow mesenchymal stem cells in diabetic wounds. NO-releasing hydrogels significantly increased the cell viability and cell proliferation of hydrogen-peroxide (H2O2) -pretreated bone marrow stem cells (BMSCs), demonstrating their cytoprotective activity, which was further confirmed by gene expression of many times as much B-cell lymphoma 2 (Bcl-2), stromal cell-derived factor-1alpha (SDF-1α), proliferating cell nuclear antigen (PCNA) and vascular endothelial growth factor (VEGF). Furthermore, the SNAP-loaded hydrogel showed continuous cell-proliferating activity for six days, due to the slow release of NO from the hydrogel. Wound-healing studies of rabbits with induced diabetes showed that the application of SNAP-preconditioned BMSCs and NO-releasing hydrogels significantly sped up the healing process, compared to the control group. The wound-healing potential of BMSCs plus NO-releasing hydrogel was further validated by improved collagen deposition and epithelial layer formation, as confirmed by histopathological examination, as well as upregulation of VEGF and SDF-1α biomarkers, as evidenced by gene-expression analysis. These results demonstrated that the application of BMSCs with NO-releasing hydrogel can promote faster regeneration of damaged tissues. Therefore, BMSCs plus NO-releasing hydrogels can be very useful for the treatment of diabetic wounds.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Quitosana/química , Diabetes Mellitus/metabolismo , Hidrogéis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Óxido Nítrico/química , Álcool de Polivinil/química , Animais , Biomarcadores/metabolismo , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Perfilação da Expressão Gênica , Peróxido de Hidrogênio , Coelhos , S-Nitroso-N-Acetilpenicilamina/química , Fator A de Crescimento do Endotélio Vascular , Cicatrização
3.
Pak J Pharm Sci ; 33(1): 191-197, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32122848

RESUMO

Whey plays an important role in the sports nutrition because of high quality proteins and essential amino acid profile. Nine formulations of sportsman drinks were made using Cheddar, Mozzarella and Paneer whey with normal as well as additional fermentation. The developed sportsman drinks were evaluated for physico-chemical analyses, amino acid profile, viscosity and total plate count along with sensory response during two month storage. Drink having Cheddar whey (T4) with additional fermentation was better in terms of quality and nutrition. Furthermore, amino acid profile considered it a complete and balanced source of essential and non-essential amino acids. Amongst essential amino acids, highest values was recorded for branched chain amino acids like leucine (73.16±3.09) followed by lysine (61.56±0.61) and valine (44.13±1.86)mg/g protein. The dietary significance of sportsman drink can be enhanced through additional fermentation using Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophillus.


Assuntos
Bebidas , Composição de Medicamentos/métodos , Probióticos/química , Esportes , Proteínas do Soro do Leite/química , Aminoácidos/análise , Fenômenos Químicos , Armazenamento de Medicamentos , Fermentação , Humanos , Lactobacillus delbrueckii/química , Sensação/efeitos dos fármacos , Streptococcus thermophilus/química
4.
Saudi J Biol Sci ; 22(3): 317-21, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25972753

RESUMO

Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...