Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Res (Thessalon) ; 28(1): 2, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407944

RESUMO

BACKGROUND: Erythroleukemia is caused by the uncontrolled multiplication of immature erythroid progenitor cells which fail to differentiate into erythrocytes. By directly targeting this class of malignant cells, the induction of terminal erythroid differentiation represents a vital therapeutic strategy for this disease. Erythroid differentiation involves the execution of a well-orchestrated gene expression program in which epigenetic enzymes play critical roles. In order to identify novel epigenetic mediators of differentiation, this study explores the effects of multiple, highly specific, epigenetic enzyme inhibitors, in murine and human erythroleukemia cell lines. RESULTS: We used a group of compounds designed to uniquely target the following epigenetic enzymes: G9a/GLP, EZH1/2, SMYD2, PRMT3, WDR5, SETD7, SUV420H1 and DOT1L. The majority of the probes had a negative impact on both cell proliferation and differentiation. On the contrary, one of the compounds, A-366, demonstrated the opposite effect by promoting erythroid differentiation of both cell models. A-366 is a selective inhibitor of the G9a methyltransferase and the chromatin reader Spindlin1. Investigation of the molecular mechanism of action revealed that A-366 forced cells to exit from the cell cycle, a fact that favored erythroid differentiation. Further analysis led to the identification of a group of genes that mediate the A-366 effects and include CDK2, CDK4 and CDK6. CONCLUSIONS: A-366, a selective inhibitor of G9a and Spindlin1, demonstrates a compelling role in the erythroid maturation process by promoting differentiation, a fact that is highly beneficial for patients suffering from erythroleukemia. In conclusion, this data calls for further investigation towards the delivery of epigenetic drugs and especially A-366 in hematopoietic disorders.

2.
Molecules ; 24(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652782

RESUMO

BACKGROUND: HIV is the causative agent of Acquired Immunodeficiency Syndrome (AIDS), an infectious disease with increasing incidence worldwide. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) play an important role in the treatment of AIDS. Although, many compounds are already being used as anti-HIV drugs, research for the development of new inhibitors continues as the virus develops resistant strains. METHODS: The best features of available NNRTIs were taken into account for the design of novel inhibitors. PASS (Prediction of activity spectra for substances) prediction program and molecular docking studies for the selection of designed compounds were used for the synthesis. Compounds were synthesized using conventional and microwave irradiation methods and HIV RT inhibitory action was evaluated by colorimetric photometric immunoassay. RESULTS: The evaluation of HIV-1 RT inhibitory activity revealed that seven compounds have significantly lower ΙC50 values than nevirapine (0.3 µΜ). It was observed that the activity of compounds depends not only on the nature of substituent and it position in benzothiazole ring but also on the nature and position of substituents in benzene ring. CONCLUSION: Twenty four of the tested compounds exhibited inhibitory action lower than 4 µΜ. Seven of them showed better activity than nevirapine, while three of the compounds exhibited IC50 values lower than 5 nM. Two compounds 9 and 10 exhibited very good inhibitory activity with IC50 1 nM.


Assuntos
Síndrome da Imunodeficiência Adquirida , Fármacos Anti-HIV , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Simulação de Acoplamento Molecular , Inibidores da Transcriptase Reversa , Tiazóis , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Síndrome da Imunodeficiência Adquirida/enzimologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Transcriptase Reversa do HIV/metabolismo , Humanos , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Tiazóis/síntese química , Tiazóis/química , Tiazóis/farmacologia
3.
Int J Oncol ; 53(5): 2167-2179, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30226586

RESUMO

The present study aimed to assess the pharmacological anticancer profile of three natural and five synthetic sesquiterpenes developed by total chemical synthesis. To this end, their properties at the cellular and molecular level were evaluated in a panel of normal and cancer cell lines. The results obtained by performing cytotoxicity assays and gene expression analysis by reverse transcription-quantitative polymerase chain reaction showed that: i) Among the sesquiterpene derivatives analyzed, VDS58 exhibited a notable anticancer profile within attached (U-87 MG and MCF-7) and suspension (K562 and MEL-745) cancer cell cultures; however, U-87 MG cells were able to recover their proliferation capacity rapidly after 48 h of exposure; ii) gene expression profiling of U-87 MG cells, in contrast to K562 cells, showed a transient induction of cyclin-dependent kinase inhibitor 1A (CDKN1) expression; iii) the expression levels of transforming growth factor ß1 (TGFB1) increased after 12 h of exposure of U-87 MG cells to VDS58 and were maintained at this level throughout the treatment period; iv) in K562 cells exposed to VDS58, TGFB1 expression levels were upregulated for 48 h and decrease afterwards; and v) the re-addition of VDS58 in U-87 MG cultures pretreated with VDS58 resulted in a notable increase in the expression of caspases (CASP3 and CASP9), BCL2­associated agonist of cell death (BAD), cyclin D1, CDK6, CDKN1, MYC proto-oncogene bHLH transcription factor (MYC), TGFB1 and tumor suppressor protein p53. This upregulation persisted only for 24 h for the majority of genes, as afterwards, only the expression of TGFB1 and MYC was maintained at high levels. Through bioinformatic pathway analysis of RNA-Seq data of parental U-87 MG and K562 cells, substantial variation was reported in the expression profiles of the genes involved in the regulation of the cell cycle. This was associated with the differential pharmacological profiles observed in the same cells exposed to VDS58. Overall, the data presented in this study provide novel insights into the molecular mechanisms of action of sesquiterpene derivatives by dysregulating the expression levels of genes associated with the cell cycle of cancer cells.


Assuntos
Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Sesquiterpenos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Humanos , Neoplasias/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Análise de Sequência de RNA , Sesquiterpenos/química , Sesquiterpenos/uso terapêutico , Células Tumorais Cultivadas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...