Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 44(7): 923-937, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33591590

RESUMO

Pancreas disease (PD) is a serious challenge in European salmonid aquaculture caused by salmonid alphavirus (SAV). In this study, we report the effect of immunization of Atlantic salmon with three attenuated infectious SAV3 strains with targeted mutations in a glycosylation site of the envelope E2 protein and/or in a nuclear localization signal in the capsid protein. In a pilot experiment, it was shown that the mutated viral strains replicated in fish, transmitted to naïve cohabitants and that the transmission had not altered the sequences. In the main experiment, the fish were immunized with the strains and challenged with SAV3 eight weeks after immunization. Immunization resulted in infection both in injected fish and 2 weeks later in the cohabitant fish, followed by a persistent but declining load of the mutated virus variants in the hearts. The immunized fish developed clinical signs and pathology consistent with PD prior to challenge. However, fish injected with the virus mutated in both E2 and capsid showed little clinical signs and had higher average weight gain than the groups immunized with the single mutated variants. The SAV strain used for challenge was not detected in the immunized fish indicating that these fish were protected against superinfection with SAV during the 12 weeks of the experiment.


Assuntos
Infecções por Alphavirus/veterinária , Alphavirus/classificação , Doenças dos Peixes/prevenção & controle , Pancreatopatias/veterinária , Vacinas Virais/imunologia , Alphavirus/genética , Infecções por Alphavirus/prevenção & controle , Infecções por Alphavirus/virologia , Animais , Doenças dos Peixes/virologia , Imunização/veterinária , Pancreatopatias/prevenção & controle , Salmo salar , Vacinas Atenuadas
2.
Viruses ; 12(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987930

RESUMO

Salmonid alphavirus (SAV) is the cause of pancreas disease and sleeping disease in farmed salmonid fish in Europe. The spread of these diseases has been difficult to control with biosecurity and current vaccination strategies, and increased understanding of the viral pathogenesis could be beneficial for the development of novel vaccine strategies. N-glycosylation of viral envelope proteins may be crucial for viral virulence and a possible target for its purposed attenuation. In this study, we mutated the N-glycosylation consensus motifs of the E1 and E2 glycoproteins of a SAV3 infectious clone using site-directed mutagenesis. Mutation of the glycosylation motif in E1 gave a complete inactivation of the virus as no viral replication could be detected in cell culture and infectious particles could not be rescued. In contrast, infectious virus particles could be recovered from the SAV3 E2 mutants (E2319Q, E2319A), but not if they were accompanied by lack of N-glycosylation in E1. Compared to the non-mutated infectious clone, the SAV3-E2319Q and SAV3-E2319A recombinant viruses produced less cytopathic effects in cell culture and lower amounts of infectious viral particles. In conclusion, the substitution in the N-linked glycosylation site in E2 attenuated SAV3 in cell culture. The findings could be useful for immunization strategies using live attenuated vaccines and testing in fish will be desirable to study the clone's properties in vivo.


Assuntos
Alphavirus/genética , Alphavirus/patogenicidade , Salmão/virologia , Truta/virologia , Proteínas do Envelope Viral/genética , Animais , Linhagem Celular , Efeito Citopatogênico Viral/genética , Doenças dos Peixes/virologia , Glicosilação , Mutação/genética , Vacinas Atenuadas , Proteínas do Envelope Viral/metabolismo , Virulência/genética
3.
Fish Shellfish Immunol ; 106: 374-383, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32738513

RESUMO

Salmonid alphavirus (SAV) is the etiological cause of pancreas disease (PD) in Atlantic salmon (Salmo salar). Several vaccines against SAV are in use, but PD still cause significant mortality and concern in European aquaculture, raising the need for optimal tools to monitor SAV immunity. To monitor and control the distribution of PD in Norway, all salmonid farms are regularly screened for SAV by RT-qPCR. While the direct detection of SAV is helpful in the early stages of infection, serological methods could bring additional information on acquired SAV immunity in the later stages. Traditionally, SAV antibodies are monitored in neutralization assays, but they are time-consuming and cumbersome, thus alternative assays are warranted. Enzyme-linked immunosorbent assays (ELISAs) have not yet been successfully used for anti-SAV antibody detection in aquaculture. We aimed to develop a bead-based immunoassay for SAV-specific antibodies. By using detergent-treated SAV particles as antigens, we detected SAV-specific antibodies in plasma collected from both a SAV challenge trial and a field outbreak of PD. Increased levels of SAV-specific antibodies were seen after most fish had become negative for viral RNA. The bead-based assay is time saving compared to virus neutralization assays, and suitable for non-lethal testing due to low sample size requirements. We conclude that the bead-based immunoassay for SAV antibody detection is a promising diagnostic tool to complement SAV screening in aquaculture.


Assuntos
Infecções por Alphavirus/veterinária , Doenças dos Peixes/imunologia , Pancreatopatias/veterinária , Salmo salar , Alphavirus/fisiologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Animais , Anticorpos Antivirais/sangue , Doenças dos Peixes/virologia , Imunoensaio/veterinária , Pancreatopatias/imunologia , Pancreatopatias/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...