Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 34: 215-230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31167962

RESUMO

Over 35 years since it was established to make recombinant proteins, the baculovirus expression vector system continues to develop and improve. Early systems for recombinant virus selection were laborious, but better methods were rapidly devised that enabled non-virologists to use baculovirus vectors successfully in a wide range of applications. These applications include multiple gene expression for complex molecules, production of adeno-associated virus-like particles for gene therapy, the use of baculovirus budded virus for the same purpose, numerous potential human and animal vaccines, and for other therapeutic proteins. A number of products for human and veterinary use are now on the market, which attests to the utility of the systems. Despite these successes, baculovirus vectors essentially remain in a relatively primitive state of development. Many proteins, particularly membrane-bound or secreted products, continue to be difficult to produce. Various research groups are working to identify potential areas of improvement, which if combined into an ideal vector might offer considerable advances to the system. This chapter will review some of the most recent reports and highlight those that might have generic application for recombinant protein synthesis in insect cells. We also summarize parallel developments in host cells used for baculovirus expression and how culture conditions can influence protein production.


Assuntos
Baculoviridae/genética , Expressão Gênica , Engenharia Genética , Vetores Genéticos/genética , Animais , Engenharia Genética/métodos , Humanos , Engenharia de Proteínas , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
2.
Vaccine ; 36(46): 7003-7010, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309744

RESUMO

African horse sickness is a severe, often fatal, arboviral disease of equids. The control of African horse sickness virus (AHSV) in endemic countries is based currently on the use of live attenuated vaccines despite some biosafety concerns derived from its biological properties. Thus, experimental vaccination platforms have been developed over the years in order to avoid the biosafety concerns associated with the use of attenuated vaccines. Various studies showed that baculovirus-expressed AHSV-VP2 or modified Vaccinia Ankara virus expressing AHSV-VP2 (MVA-VP2) induced virus neutralising antibodies and protective immunity in small animals and horses. AHSV is an antigenically diverse pathogen and immunity against AHS is serotype-specific. Therefore, AHS vaccines for use in endemic countries need to induce an immune response capable of protecting against all existing serotypes. For this reason, current live attenuated vaccines are administered as polyvalent preparations comprising combinations of AHSV attenuated strains of different serotypes. Previous studies have shown that it is possible to induce cross-reactive virus neutralising antibodies against different serotypes of AHSV by using polyvalent vaccines comprising combinations of either different serotype-specific VP2 proteins, or MVA-VP2 viruses. However, these strategies could be difficult to implement if induction of protective immunity is highly dependent on using a two-dose vaccination regime for each serotype the vaccine intends to protect against. In our study, we have tested the protective capacity of MVA-VP2 and baculovirus-expressed VP2 vaccines when a single dose was used. Groups of interferon alpha receptor knock-out mice were inoculated with either MVA-VP2 or baculovirus-expressed VP2 vaccines using one dose or the standard two-dose vaccination regime. After vaccination, all four vaccinated groups were challenged with AHSV and clinical responses, lethality and viraemia compared between the groups. Our results show that complete clinical protection was achieved after a single vaccination with either MVA-VP2 or baculovirus sub-unit VP2 vaccines.


Assuntos
Doença Equina Africana/prevenção & controle , Proteínas do Capsídeo/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , Baculoviridae/genética , Modelos Animais de Doenças , Portadores de Fármacos , Feminino , Vetores Genéticos , Camundongos , Análise de Sobrevida , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vaccinia virus/genética , Viremia/prevenção & controle
3.
Viruses ; 10(10)2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347797

RESUMO

Pancreatic islet transplantation is a promising treatment for type 1 diabetes mellitus offering improved glycaemic control by restoring insulin production. Improved human pancreatic islet isolation has led to higher islet transplantation success. However, as many as 50% of islets are lost after transplantation due to immune responses and cellular injury, gene therapy presents a novel strategy to protect pancreatic islets for improved survival post-transplantation. To date, most of the vectors used in clinical trials and gene therapy studies have been derived from mammalian viruses such as adeno-associated or retrovirus. However, baculovirus BacMam vectors provide an attractive and safe alternative. Here, a novel BacMam was constructed containing a frameshift mutation within fp25, which results in virus stocks with higher infectious titres. This improved in vitro transduction when compared to control BacMams. Additionally, incorporating a truncated vesicular stomatitis virus G protein increased transduction efficacy and production of EGFP and BCL2 in human kidney (HK-2) and pancreatic islet ß cells (EndoC ßH3). Lastly, we have shown that our optimized BacMam vector can deliver and express egfp in intact pancreatic islet cells from human cadaveric donors. These results confirm that BacMam vectors are a viable choice for providing delivery of transgenes to pancreatic islet cells.


Assuntos
Baculoviridae/genética , Diabetes Mellitus Tipo 1/terapia , Terapia Genética/instrumentação , Células Secretoras de Insulina/virologia , Transdução Genética , Baculoviridae/fisiologia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ilhotas Pancreáticas/virologia
4.
Curr Protoc Protein Sci ; 91: 5.4.1-5.4.6, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29516481

RESUMO

This unit provides information on the replication cycle of insect baculovirus to provide an understanding of how this virus has been adapted for use as an expression vector for recombinant proteins in insect cells. We provide an overview of the virus structure and its unique bi-phasic replication cycle, which has been exploited in developing the virus as an expression vector. We also review the development of the baculovirus expression vector system (BEVS), from the mid-1980s to the present day in which the BEVS is now an established tool for the production of a range of recombinant proteins and multi-protein complexes including virus-like particles. We describe advances made to the BEVS to allow the rapid and easy production of recombinant viruses and developments to improve protein yield. We finish by describing the application of recombinant BacMam as vectors for the delivery of genes into mammalian and human cells. © 2018 by John Wiley & Sons, Inc.


Assuntos
Baculoviridae/genética , Baculoviridae/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Proteínas Recombinantes/biossíntese , Animais , Humanos , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...