Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 334(6058): 958-61, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22096193

RESUMO

Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO(3) template layer with superior piezoelectric coefficients (e(31,f) = -27 ± 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.

2.
Phys Rev Lett ; 87(21): 211801, 2001 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-11736330

RESUMO

The Casimir force between uncharged metallic surfaces originates from quantum-mechanical zero-point fluctuations of the electromagnetic field. We demonstrate that this quantum electrodynamical effect has a profound influence on the oscillatory behavior of microstructures when surfaces are in close proximity (< or =100 nm). Frequency shifts, hysteretic behavior, and bistability caused by the Casimir force are observed in the frequency response of a periodically driven micromachined torsional oscillator.

3.
Science ; 291(5510): 1941-4, 2001 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-11239149

RESUMO

The Casimir force is the attraction between uncharged metallic surfaces as a result of quantum mechanical vacuum fluctuations of the electromagnetic field. We demonstrate the Casimir effect in microelectromechanical systems using a micromachined torsional device. Attraction between a polysilicon plate and a spherical metallic surface results in a torque that rotates the plate about two thin torsional rods. The dependence of the rotation angle on the separation between the surfaces is in agreement with calculations of the Casimir force. Our results show that quantum electrodynamical effects play a significant role in such microelectromechanical systems when the separation between components is in the nanometer range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...