Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 915701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937689

RESUMO

Autism spectrum disorder (ASD) is a neurological disorder that affects normal brain development. The recent finding of the microbiota-gut-brain axis indicates the bidirectional connection between our gut and brain, demonstrating that gut microbiota can influence many neurological disorders such as autism. Most autistic patients suffer from gastrointestinal (GI) symptoms. Many studies have shown that early colonization, mode of delivery, and antibiotic usage significantly affect the gut microbiome and the onset of autism. Microbial fermentation of plant-based fiber can produce different types of short-chain fatty acid (SCFA) that may have a beneficial or detrimental effect on the gut and neurological development of autistic patients. Several comprehensive studies of the gut microbiome and microbiota-gut-brain axis help to understand the mechanism that leads to the onset of neurological disorders and find possible treatments for autism. This review integrates the findings of recent years on the gut microbiota and ASD association, mainly focusing on the characterization of specific microbiota that leads to ASD and addressing potential therapeutic interventions to restore a healthy balance of gut microbiome composition that can treat autism-associated symptoms.


Assuntos
Transtorno do Espectro Autista , Gastroenteropatias , Microbioma Gastrointestinal , Microbiota , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/fisiologia , Humanos
2.
Clin Chim Acta ; 523: 131-143, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34529985

RESUMO

Diabetic nephropathy (DN), a sterile inflammatory disease, is a serious complication of diabetes mellitus. However, recent evidence indicates that pyroptosis, a new term for pro-inflammatory cell death featured by gasdermin D (GSDMD)-stimulated plasma membrane pore generation, cell expansion and rapid lysis with the extensive secretion of pro-inflammatory factors, including interleukin-1ß (IL-1ß) and -18 (IL-18) may be involved in DN. Caspase-1-induced canonical and caspase-4/5/11-induced non-canonical inflammasome-signaling pathways are mainly believed to participate in pyroptosis-mediated cell death. Further research has uncovered that activation of the caspase-3/8 signaling pathway may also activate pyroptosis. Accumulating evidence has shown that NLRP3 inflammasome activation plays a critical role in promoting the pathogenesis of DN. In addition, current studies have suggested that pyroptosis-induced cell death promotes several diabetic complications that include DN. Our present study briefs the cellular mechanisms of pyroptosis-related signaling pathways and their impact on the promotion of DN. In this review, several investigational compounds suppressing pyroptosis-mediated cell death are explored as promising therapeutics in DN.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Nefropatias Diabéticas , Caspase 1 , Nefropatias Diabéticas/tratamento farmacológico , Humanos , Inflamassomos , Piroptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...