Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2310701, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733269

RESUMO

Magnetic navigation systems are used to precisely manipulate magnetically responsive materials enabling the realization of new minimally invasive procedures using magnetic medical devices. Their widespread applicability has been constrained by high infrastructure demands and costs. The study reports on a portable electromagnetic navigation system, the Navion, which is capable of generating a large magnetic field over a large workspace. The system is easy to install in hospital operating rooms and transportable through health care facilities, aiding in the widespread adoption of magnetically responsive medical devices. First, the design and implementation approach for the system are introduced and its performance is characterized. Next, in vitro navigation of different microrobot structures is demonstrated using magnetic field gradients and rotating magnetic fields. Spherical permanent magnets, electroplated cylindrical microrobots, microparticle swarms, and magnetic composite bacteria-inspired helical structures are investigated. The navigation of magnetic catheters is also demonstrated in two challenging endovascular tasks: 1) an angiography procedure and 2) deep navigation within the circle of Willis. Catheter navigation is demonstrated in a porcine model in vivo to perform an angiography under magnetic guidance.

2.
Soft Robot ; 7(6): 724-735, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32293987

RESUMO

Tunable-impedance mechanisms can improve the adaptivity, robustness, and efficiency of a vast array of engineering systems and soft robots. In this study, we introduce a tunable-stiffness mechanism called a "sandwich jamming structure," which fuses the exceptional stiffness range of state-of-the-art laminar jamming structures (also known as layer jamming structures) with the high stiffness-to-mass ratios of classical sandwich composites. We experimentally develop sandwich jamming structures with performance-to-mass ratios that are far greater than laminar jamming structures (e.g., a 550-fold increase in stiffness-to-mass ratio), while simultaneously achieving tunable behavior that standard sandwich composites inherently cannot achieve (e.g., a rapid and reversible 1800-fold increase in stiffness). Through theoretical and computational models, we then show that these ratios can be augmented by several orders of magnitude further, and we provide an optimization routine that allows designers to build the best possible sandwich jamming structures given arbitrary mass, volume, and material constraints. Finally, we demonstrate the utility of sandwich jamming structures by integrating them into a wearable soft robot (i.e., a tunable-stiffness wrist orthosis) that has negligible impact on the user in the off state, but can reduce muscle activation by an average of 41% in the on state. Through these theoretical and experimental investigations, we show that sandwich jamming structures are a lightweight highly tunable mechanism that can markedly extend the performance limits of existing structures and devices.


Assuntos
Aparelhos Ortopédicos , Robótica , Impedância Elétrica , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...