Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Sci ; 34(3): 369-373, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29526907

RESUMO

A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-µg L-1 levels by on-line PIEC ion stacking-ion chromatography.

2.
J Sep Sci ; 40(16): 3205-3213, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28590082

RESUMO

It has been reported that ion enrichment phenomena are observed in liquid chromatographic processes with an aqueous mobile phase on the columns packed with nonionic materials. However, the mechanism of the ion enrichment is not at all well understood. In this study, we investigated the retention and enrichment behaviors of simple inorganic anions on a C18-bonded silica column and a cross-linked hydroxylated methacrylic polymer gel column with pure aqueous mobile phases containing various electrolytes. We show that the stacking of ionic solutes can successfully be accounted for by the ion partition model, and it takes place due to the effect of the background coion in the eluent and/or sample solution on the distribution of the ions between the bulk water and the water incorporated in the packing material, which acts as the stationary phase. Using the ion exclusion effect of fixed anionic charges on a packing material as well as the ion stacking by partition, we developed a simple and versatile method for effective enrichment of anionic solutes in aqueous solutions. The enrichment factor and the elution time of the stacked ion zone can be predicted by the ion partition model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...