Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 18(1): 580-594, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34914383

RESUMO

The growing interest in the effects of external electric fields on reactive processes requires predictive methods that can reach longer length and time scales than quantum mechanical simulations. Recently, many studies have included electric fields in ReaxFF, a widely used reactive molecular dynamics method. In the case of modeling an external electric field, the charge distribution method used in ReaxFF is critical. The most common charge distribution method used in previous studies of electric fields is the charge equilibration (QEq) method, which assumes that the system is a contiguous conductor and that charge transfer can occur across any distance. In contrast, many systems of interest are insulators or semiconductors, and long-distance charge transfer should not occur in response to a small difference in potential. This study focuses on the limitations of the QEq method in the context of water in an external electric field. We demonstrate that QEq can predict unphysical charge distributions and exhibits properties that do not converge as a function of system size. Furthermore, we show that electric fields within the recently developed atom-condensed Kohn-Sham density functional theory (DFT) approximated to the second-order (ACKS2) approach address the major limitations of electric fields in QEq. With ACKS2, we observe more physical charge distributions and properties that converge as a function of system size. We do not suggest that ACKS2 is perfect in all circumstances but rather show specific cases where it addresses the major shortcomings of QEq in the context of an external electric field.

2.
J Chem Phys ; 153(8): 084107, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872856

RESUMO

Studies using molecular dynamics (MD) have long struggled to simulate the failure modes of materials, predicting unrealistically high ductility and failing to capture brittle fracture. The primary cause of this shortcoming is an inadequate description of bond breaking. While reactive force fields such as ReaxFF show improvements compared to traditional force fields, the charge models used yield unphysical partial charges, especially during dissociation of ionic bonds. This flaw may be remedied by using the atom-condensed Kohn-Sham density functional theory (DFT) approximated to a second order (ACKS2) charge model for determining partial charges. In this work, we present a new ACKS2-enabled Reax force field for fracture simulations of lithium oxide systems, which was obtained by training against an extensive set of DFT, multireference configuration interaction (MRCI), and MRCI+Q reference data using genetic optimization techniques. This new force field significantly improves the bond breaking behavior, but still cannot fully capture the brittle fracture in MD simulations, suggesting more research is needed to improve simulation of brittle fracture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...