Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083692

RESUMO

The geometric and electronic characteristics of phosphorus-atom doped aluminum nanoclusters, AlnPm (n = 7-17, m = 1 and 2), were investigated through a combination of experiments and theoretical calculations. The size dependences of the ionization energy (Ei) for AlnPm NCs exhibit a local minimum of 5.37 eV at Al12P1, attributed to an endohedral P@Al12 superatom (SA). This SA originates from an excess electron toward the 2P shell closing (40e), coexisting with an exohedral isomer featuring a vertex P atom. The stability of the endohedral P@Al12 is further enhanced in its cationic state compared to the exohedral isomer, when complexed with a fluorine (F) atom, forming an SA salt denoted as P@Al12+F- with an elevated Ei ranging from 6.42 to 7.90 eV. In contrast, for the anionic Al12P1-, the exohedral form is found to be more stable than the endohedral one using anion photoelectron spectroscopy and calculations. The geometric and electronic robustness of neutral P@Al12 SAs against electron donation and acceptance is discussed in comparison to rare-gas-like Si@Al12 SAs.

2.
J Phys Condens Matter ; 30(49): 494004, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30451157

RESUMO

Binary nanoclusters (NCs) exhibit strong potential as building blocks for tailor-made scientific materials based on the precise tuning of their electron countings and spin states along with the synergistic effects that originate from the constituent elements. Herein, we studied the electronic and geometric structures of transition metal (TM) doped aluminum (Al) Al12X NCs (X = Sc and Ti), which are binary systems that extend from representative superatom [Formula: see text] anions. On the basis of the photoelectron spectroscopy (PES) and density functional theory (DFT) calculations, Al12X anion and neutral structures are characterized as vertex-replaced icosahedron. The highly stable exohedral Al12X icosahedron is described based on an electron counting rule derived from the coupling of Wade-Mingos' rule and the jellium model.

3.
Phys Chem Chem Phys ; 19(31): 20401-20411, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28730209

RESUMO

The geometric and electronic properties of silicon-atom-doped aluminum clusters, AlnSim (n = 7-30, m = 0-2), were investigated experimentally. The size dependences of the ionization energy and electron affinity of AlnSim show that the stability of AlnSim is governed by the total number of valence electrons in the clusters, where Al and Si atoms behave as trivalent and tetravalent atoms, respectively. Together with theoretical calculations, it has been revealed that neutral Al10Si and Al12Si have a cage-like geometry with central Si atom encapsulation and closed electronic structures of superatomic orbitals (SAOs), and also that they both exhibit geometric robustness against reductive and oxidative changes as cage-like binary superatoms of Si@Al10 and Si@Al12. As well as the single-atom-doped binary superatoms, the effect of symmetry lowering was examined by doping a second Si atom toward the electron SAO closing of 2P SAO, forming Al11Si2. The corresponding anion and cation clusters keep their geometry of the neutral intact, and the ionization energy is low compared to others, showing that Al11Si2 is characterized to be, Si@Al11Si as an alkaline-like binary superatom. For Al21Si2, a face-sharing bi-icosahedral structure was identified to be the most stable as dimeric superatom clusters.

4.
J Phys Chem A ; 111(1): 42-9, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17201386

RESUMO

Silicon clusters mixed with a transition metal atom, MSin, were generated by a double-laser vaporization method, and the electronic and geometric stabilities for the resulting clusters with transition metal encapsulated by silicon were examined experimentally. By means of a systematic doping with transition metal atoms of groups 3, 4, and 5 (M = Sc, Y, Lu, Ti, Zr, Hf, V, Nb, and Ta), followed by changes of charge states, we explored the use of an electronic closing of a silicon caged cluster and variations in its cavity size to facilitate metal-atom encapsulation. Results obtained by mass spectrometry, anion photoelectron spectroscopy, and adsorption reactivity toward H2O show that the neutral cluster doped with a group 4 atom features an electronic and a geometric closing at n = 16. The MSi(16) cluster with a group 4 atom undergoes an electronic change in (i) the number of valence electrons when the metal atom is substituted by the neighboring metals with a group 3 or 5 atom and in (ii) atomic radii with the substitution of the same group elements of Zr and Hf. The reactivity of a halogen atom with the MSi(16) clusters reveals that VSi(16)F forms a superatom complex with ionic bonding.

5.
J Phys Chem A ; 111(4): 573-7, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17249745

RESUMO

Electronic properties of silicon and germanium atom doped indium clusters, In(n)Si(m) and In(n)Ge(m), were investigated by photoionization spectroscopy of the neutrals and photoelectron spectroscopy of the anions. Size dependence of ionization energy and electron affinity for In(n)Si(1) and In(n)Ge(1) exhibit pronounced even-odd alternation at cluster sizes of n = 10-16, as compared to those for pure In(n) clusters. This result shows that symmetry lowering with the doped atom of Si or Ge results in undegeneration of electronic states in the 1d shell formed by monovalent In atoms.

6.
J Phys Chem A ; 110(44): 12073-6, 2006 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17078599

RESUMO

The geometric and electronic structures of aluminum binary clusters, AlnX (X = Si and P), have been investigated, using mass spectrometry, anion photoelectron spectroscopy, photoionization spectroscopy, and theoretical calculations. Both experimental and theoretical results show that Al12Si has a high ionization energy and low electron affinity and Al12P has a low ionization energy, both with the icosahedral structure having a central Si or P atom, revealing that Al12Si and Al12P exhibit rare-gas-like and alkali superatoms, respectively. Experiments confirmed the possibility that the change in the total number of valence electrons on substitution could produce ionically bound binary superatom complexes, the binary cluster salts Al12P+ F- and Al12B- Cs+.

7.
J Am Chem Soc ; 127(14): 4998-9, 2005 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-15810816

RESUMO

Metal-encapsulated silicon cage clusters are a new class of clusters and are opening up new avenues for silicon-based nanoscale materials. We present experimental evidence for a highly stable cluster corresponding to M@Si16 (M = Sc, Ti, and V). Mass spectrometry and anion photoelectron spectroscopy show that the cluster features an electronically closed TiSi16 neutral core which undergoes a change in the number of valence electrons involving (i) substitution of neighboring metals with Sc and V, or (ii) addition of a halogen atom to the TiSi16 anion, and that VSi16F is predicted to form an ionically bound superatom complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...