Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(17): 21284-21295, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37079463

RESUMO

Hybrid organic-inorganic metal halide perovskites (HOIP) have become a promising visible light sensing material due to their excellent optoelectronic characteristics. Despite the superiority, overcoming the stability issue for commercialization remains a challenge. Herein, an extremely stable photodetector was demonstrated and fabricated with Cs0.06FA0.94Pb(I0.68Br0.32)3 perovskite by an all-vacuum process. The photodetector achieves a current density up to 1.793 × 10-2 A cm-2 under standard one sun solar illumination while maintaining a current density as low as 8.627 × 10-10 A cm-2 at zero bias voltage. The linear dynamic range (LDR) and transient voltage response were found to be comparable to the silicon-based photodetector (Newport 818-SL). Most importantly, the device maintains 95% of the initial performance after 960 h of incessant exposure under one sun solar illumination. The achievements of these outstanding results contributed to the all-vacuum deposition process delivering a film with high stability and good uniformity, which in turn delays the degradation process. The degradation mechanism is further investigated by impedance spectroscopy to reveal the charge dynamics in the photodetector under different exposure times.

2.
ACS Appl Mater Interfaces ; 14(16): 18782-18793, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420411

RESUMO

A new dioxasilepine and aryldiamine hybrid material DPSi-DBDTA is designed to act as the electron-blocking layer (EBL) for vacuum-processed organic photodetector (OPD). The O-Si-O-linked cyclic structure leads DPSi-DBDTA to have dipolar character, high LUMO, and good thermal and morphology stability suitable for vacuum deposition. An initial trial with C60-based single active layer OPD device manifests the superior capability of DPSi-DBDTA for dark current suppression compared to the typical aryldiamines. Here, the bare and MoO3-doped DPSi-DBDTA is further examined as EBLs for the visible light responsive OPD comprising DTDCPB/C70 bulk heterojunction (BHJ) as the active layer. In sync with the result of C60-based OPD, the low dark current density and high specific detectivity D* (7.085 × 1012 cm Hz1/2 W-1) are achieved. The device with 5% MoO3-doped EBL can exhibit a wide linear dynamic range (LDR) up to 154.166 dB, which is attributed to suppression of both dark current density and carrier recombination. Additionally, the devices also manifest fast time-resolved performance in both frequency and transient response measurements. Especially for the device with 20% MoO3-doped EBL, a wide cutoff frequency response 692.047 kHz and record-high transient response demonstrating ≤0.683 µs for transient photovoltage (TPV) and ≤0.478 µs for transient photocurrent (TPC) have been realized, which is possibly owing to the balance of mobility that mitigates the damage from traps. Such submicrosecond response is comparable with the state-of-the-art perovskite-PDs and Si-PDs.

3.
Adv Mater ; 34(18): e2109785, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35245396

RESUMO

In recent years, the performance of perovskite quantum dots (QDs) and QD-based light-emitting diodes (QLEDs) has improved greatly, with electroluminescence (EL) efficiency of green and red emission exceeding 20%. However, the development of perovskite near-infrared (NIR) QLEDs has reached stagnation, where the reported maximum EL efficiency is still below 6%, limiting their further applications. In this work, new NIR-emissive FAPbI3 QDs are developed by post-treating long alkyl-encapsulated QDs with 2-phenylethylammonium iodide (PEAI). The incorporation of PEAI reduces the QD surface defects for giving a high photoluminescence quantum yield up to 61.6%. The n-octane solution of PEAI-passivated FAPbI3 QDs is spin coated on top of the PEDOT:PSS-treated ITO electrode modified with a thermally crosslinked hole-transporting layer to give a full-coverage, smooth, and dense QD film. Incorporating with an effective electron-transporting material, CN-T2T, which has deep lowest unoccupied molecular orbital and good electron mobility, the optimal device with EL λmax at 772 nm achieves an external quantum efficiency up to 15.4% at a current density of 0.54 mA cm-2 (2.6 V), which is the highest efficiency ever reported for perovskite-based NIR QLEDs. This study provides a facile strategy to prepare high-quality perovskite QD films suitable for highly efficient NIR QLED applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...