Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JASA Express Lett ; 3(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038678

RESUMO

Brillouin-zone (BZ) definition in a class of non-reciprocal Willis monatomic lattices (WMLs) is analytically quantified. It is shown that BZ boundaries only shift in response to non-reciprocity in one-dimensional WMLs, implying a constant BZ width, with asymmetric dispersion diagrams exhibiting unequal wavenumber ranges for forward and backward going waves. An extension to square WMLs is briefly discussed, analogously demonstrating the emergence of shifted and irregularly shaped BZs, which maintain constant areas regardless of non-reciprocity strength.

2.
Adv Sci (Weinh) ; 9(18): e2201204, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35470580

RESUMO

Topological field-effect transistor is a revolutionary concept that physical fields are used to switch on and off quantum topological states of the condensed matter. Although this emerging concept has been explored in electronics, how to realize it in the acoustic realm remains elusive. In this work, a class of magnetoactive acoustic topological transistors capable of on-demand switching on and off topological states and reconfiguring topological edges with external magnetic fields is presented. The key mechanism is to harness magnetic fields to tune air-cavity volumes within acoustic chambers, thus breaking or preserving the inversion symmetry to manifest or conceal the quantum valley Hall effect. To switch the topological transport beyond the in-plane routes, a magneto-tuned non-topological band gap to allow or forbid the wave transport out-of-plane is harnessed. With the reversible magnetic control, on-demand switching of topological routes to realize topological field-effect waveguides and wave regulators is demonstrated. Analogous to the impact of semiconductor transistors on modern electronics, this work may expand the scope of topological acoustics by achieving unprecedented functions in acoustic modulation.

3.
Research (Wash D C) ; 2020: 4825185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32110778

RESUMO

Most of the existing acoustic metamaterials rely on architected structures with fixed configurations, and thus, their properties cannot be modulated once the structures are fabricated. Emerging active acoustic metamaterials highlight a promising opportunity to on-demand switch property states; however, they typically require tethered loads, such as mechanical compression or pneumatic actuation. Using untethered physical stimuli to actively switch property states of acoustic metamaterials remains largely unexplored. Here, inspired by the sharkskin denticles, we present a class of active acoustic metamaterials whose configurations can be on-demand switched via untethered magnetic fields, thus enabling active switching of acoustic transmission, wave guiding, logic operation, and reciprocity. The key mechanism relies on magnetically deformable Mie resonator pillar (MRP) arrays that can be tuned between vertical and bent states corresponding to the acoustic forbidding and conducting, respectively. The MRPs are made of a magnetoactive elastomer and feature wavy air channels to enable an artificial Mie resonance within a designed frequency regime. The Mie resonance induces an acoustic bandgap, which is closed when pillars are selectively bent by a sufficiently large magnetic field. These magnetoactive MRPs are further harnessed to design stimuli-controlled reconfigurable acoustic switches, logic gates, and diodes. Capable of creating the first generation of untethered-stimuli-induced active acoustic metadevices, the present paradigm may find broad engineering applications, ranging from noise control and audio modulation to sonic camouflage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...