Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(8): 4327-4338, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424390

RESUMO

Low-cost and washable resistive switching (RS) memory devices with stable retention and low operational voltage are important for higher speed and denser non-volatile memories. In the case of green electronics, pectin has emerged as a suitable alternative to toxic metal oxides for resistive switching applications. Herein, a pectin-based thin film was fabricated on a fluorine-doped tin oxide glass substrate for RS mechanism. The presence of sp3-C groups with low binding energy corresponds to tunable charged defects and the oxygen vacancies confirmed by the O 1s spectra that plays a decisive role in the resistive switching mechanism, as revealed by X-ray photoemission spectroscopy (XPS). The surface morphology of the pectin film shows homogeneous growth and negligible surface roughness (38.98 ± 9.09). The pectin film can dissolve in DI water (10 minutes) owing to its ionization of carboxylic groups, that meet the trends of transient electronics. The developed Ag/pectin/FTO-based memory cell exhibits stable and reproducible bipolar resistive switching behavior along with an excellent ON/OFF ratio (104) and negligible electrical degradation was observed over 30 repeated cycles. Hence, it appears to be a valuable application for green electronics. Indeed, biocompatible storage devices derived from natural pectin are promising for high-density safe applications for information storage systems, flexible electronics, and green electronics.

2.
ACS Omega ; 5(30): 19050-19060, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775907

RESUMO

Leakage of current in oxide layers is the main issue for higher speed and denser resistive random-access memory. Defect engineering played a substantial role in meeting this challenge by doping or producing controlled interstitial defects or active sites. These controlled active sites enabled memory cells to form a stable and reproducible conduction filament following an electrochemical metallization model. In this study, a defect-abundant lime peel extract (LPE)-mediated anatase TiO2 thin film was fabricated using a simple hydrothermal route. The detailed structural and morphological analysis of the bioactive anatase TiO2-LPE thin film reveals the homogeneous growth of TiO2 flowers and distinct features in terms of controlled defects as compared to simple anatase TiO2. These interstitial defects (Ti+3 and Ti+4) behave as active sites for cation migrations along highly conductive K1+ ions because of the mediation of LPE. The defect-free surface reveals slight surface roughness (4.8 nm) that successfully minimizes leakage of current. The strategy enabled a reliable conductive bridge filament, which can replicate with no more electric degradation. The Ag/TiO2-LPE/FTO-based memory cell demonstrates reproducible bipolar resistive switching along with a high ON/OFF ratio (>105), excellent endurance (1.5 × 103 cycles), and long-term retention (105 s) without any electrical degradation. Furthermore, green-synthesized TiO2-LPE nanoparticles have shown superior antibacterial activity as compared to other green syntheses of different plants or fruits against the toxic microorganisms present in inorganic media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...