Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(3): 1107-1117, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559733

RESUMO

Patchy particles occupy an increasingly important space in soft matter research due to their ability to assemble into intricate phases and states. Being able to fine-tune the interactions among these particles is essential to understanding the principles governing the self-assembly processes. However, current fabrication techniques often yield patches that deviate chemically and physically from the native particles, impeding the identification of the driving forces behind self-assembly. To overcome this challenge, we propose a new approach to synthesizing spherical colloids with a well-defined rough patch on their surface. By treating polystyrene microspheres with vapors of a good solvent, here an acetone-water mixture, we achieve selective polymer corrugation on the particle surface resulting in a chemically similar yet rough surface patch. The key step is the selective condensation of the acetone-water vapors on the apex of the polystyrene microparticles immobilized on a substrate, which leads to rough patch formation. We leverage the ability to tune the vapor-liquid equilibrium of the volatile acetone-water mixture to precisely control the polymer corrugation on the particle surface. We demonstrate the dependence of patch formation on particle and substrate wettability, with the condensation occurring on the particle apex only when it is more wettable than the substrate, which is consistent with Volmer's classical nucleation theory. By combining experiments and molecular dynamics simulations, we identify the role of the rough patch in the depletion interaction-driven self-assembly of the microspheres, which is crucial for designing programmable supracolloidal structures.

2.
ACS Appl Mater Interfaces ; 16(14): 17339-17346, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531044

RESUMO

Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.


Assuntos
Caenorhabditis elegans , Nanopartículas , Animais , Magnetismo , Imãs , Campos Magnéticos
3.
Environ Sci Process Impacts ; 25(9): 1519-1531, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37602395

RESUMO

Microplastics and per- and polyfluoroalkyl substances (PFAS) are two of the most notable emerging contaminants reported in the environment. Micron and nanoscale plastics possess a high surface area-to-volume ratio, which could increase their potential to adsorb pollutants such as PFAS. One of the most concerning sub-classes of PFAS are the perfluoroalkyl carboxylic acids (PFCAs). PFCAs are often studied in the same context as other environmental contaminants, but their amphiphilic properties are often overlooked in determining their fate in the environment. This lack of consideration has resulted in a diminished understanding of the environmental mobility of PFCAs, as well as their interactions with environmental media. Here, we investigate the interaction of PFCAs with polyethylene microplastics, and identify the role of environmental weathering in modifying the nature of interactions. Through a series of adsorption-desorption experiments, we delineate the role of the fluoroalkyl tail in the binding of PFCAs to microplastics. As the number of carbon atoms in the fluoroalkyl chain increases, there is a corresponding increase in the adsorption of PFCAs onto microplastics. This relationship can become modified by environmental weathering, where the PFCAs are released from the macro and microplastic surface after exposure to simulated sunlight. This study identifies the fundamental relationship between PFCAs and plastic pollutants, where they can mutually impact their thermodynamic and transport properties.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Microplásticos , Plásticos , Ácidos Carboxílicos , Polietileno
4.
Soft Matter ; 19(32): 6183, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534983

RESUMO

Correction for 'Magnetic field enabled in situ control over the structure and dynamics of colloids interacting via SALR potentials' by Hashir M. Gauri et al., Soft Matter, 2023, 19, 4439-4448, https://doi.org/10.1039/D3SM00354J.

5.
Soft Matter ; 19(24): 4439-4448, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37249470

RESUMO

Colloidal suspensions are an ideal model for studying crystallization, nucleation, and glass transition mechanisms, due to the precise control of interparticle interactions by changing the shape, charge, or volume fraction of particles. However, these tuning parameters offer insufficient active control over interparticle interactions and reconfigurability of assembled structures. Dynamic control over the interparticle interactions can be obtained through the application of external magnetic fields that are contactless and chemically inert. In this work, we demonstrate the dual nature of magnetic nanoparticle dispersions to program interactions between suspended nonmagnetic microspheres using an external magnetic field. The nanoparticle dispersion simultaneously behaves as a continuous magnetic medium at the microscale and a discrete medium composed of individual particles at the nanoscale. This enables control over a depletion attractive potential and the introduction of a magnetic repulsive potential, allowing a reversible transition of colloidal structures within a rich phase diagram by applying an external magnetic field. Active control over competing interactions allows us to create a model system encompassing a range of states, from large fractal clusters to low-density Wigner glass states. Monitoring the dynamics of colloidal particles reveals dynamic heterogeneity and a marked slowdown associated with approaching the Wigner glass state.

7.
ACS Environ Au ; 2(6): 549-555, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36411868

RESUMO

Microplastics are ubiquitous in the environment, leading to a new form of plastic pollution crisis, which has reached an alarming level worldwide. Micron and nanoscale plastics may get integrated into ecological cycles with detrimental effects on various ecosystems. Commodity plastics are widely considered to be chemically inert, and alterations in their surface properties due to environmental weathering are often overlooked. This lack of knowledge on the dynamic changes in the surface chemistry and properties of (micro)plastics has impeded their life-cycle analysis and prediction of their fate in the environment. Through simulated weathering experiments, we delineate the role of sunlight in modifying the physicochemical properties of microplastics. Within 10 days of accelerated weathering, microplastics become dramatically more dispersible in the water column and can more than double the surface uptake of common chemical pollutants, such as malachite green and lead ions. The study provides the basis for identifying the elusive link between the surface properties of microplastics and their fate in the environment.

9.
ACS Environ Au ; 2(1): 3-10, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37101760

RESUMO

Microplastics are sub-millimeter-sized fragments of plastics and a relatively new class of pollutant increasingly found in the environment. Due to their size and surface area to volume ratio, the physicochemical characteristics of microplastics can diverge from those of their macroscopic counterparts. This is partly why it is challenging to understand their origin, analyze their behavior, and predict their fates in the environment compared to large pollutants. We believe that adopting a view of microplastics as a colloid provides a holistic framework that connects their physical properties and surface chemistries with observations of their dynamics in the environment. In particular, we discuss the role of fundamental principles of colloid science in interpreting phenomena of wetting, adsorption, aggregation, and transport of microplastics. Colloid and interface science can provide the tools to couple or decouple the physicochemical behaviors of microplastics, which may aid in understanding the environmental challenge both from a fundamental perspective and with respect to practical remediation methods.

10.
Commun Chem ; 5(1): 72, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-36697688

RESUMO

Competition between attractive and repulsive interactions drives the formation of complex phases in colloidal suspensions. A major experimental challenge lies in decoupling independent roles of attractive and repulsive forces in governing the equilibrium morphology and long-range spatial distribution of assemblies. Here, we uncover the 'dual nature' of magnetic nanoparticle dispersions, particulate and continuous, enabling control of the short-range attraction and long-range repulsion (SALR) between suspended microparticles. We show that non-magnetic microparticles suspended in an aqueous magnetic nanoparticle dispersion simultaneously experience a short-range depletion attraction due to the particulate nature of the fluid in competition with an in situ tunable long-range magnetic dipolar repulsion attributed to the continuous nature of the fluid. The study presents an experimental platform for achieving in situ control over SALR between colloids leading to the formation of reconfigurable structures of unusual morphologies, which are not obtained using external fields or depletion interactions alone.

11.
J Phys Chem B ; 125(16): 4232-4240, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33876931

RESUMO

Active colloids are a synthetic analogue of biological microorganisms that consume external energy to swim through viscous fluids. Such motion requires breaking the symmetry of the fluid flow in the vicinity of a particle; however, it is challenging to understand how surface and shape anisotropies of the colloid lead to a particular trajectory. Here, we attempt to deconvolute the effects of particle shape and surface anisotropy on the propulsion of model ellipsoids in alternating current (AC) electric fields. We first introduce a simple process for depositing metal patches of various shapes on the surfaces of ellipsoidal particles. We show that the shape of the metal patch is governed by the assembled structure of the ellipsoids on the substrate used for physical vapor deposition. Under high-frequency AC electric field, ellipsoids dispersed in water show linear, circular, and helical trajectories which depend on the shapes of the surface patches. We demonstrate that features of the helical trajectories such as the pitch and diameter can be tuned by varying the degree of patch asymmetry along the two primary axes of the ellipsoids, namely longitudinal and transverse. Our study reveals the role of patch shape on the trajectory of ellipsoidal particles propelled by induced charge electrophoresis. We develop heuristics based on patch asymmetries that can be used to design patchy particles with specified nonlinear trajectories.

12.
Soft Matter ; 16(42): 9643-9647, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32954396

RESUMO

Solvent evaporation in unpinned droplets of colloidal suspensions leads to the formation of porous shells which buckle under the pressure differential imposed by drying. We investigate the role of aspect ratio of rod-shaped particles in suppressing such buckling instabilities. Longer, thinner rods pack into permeable shells with consequently lower Darcy's pressure and thus avoid buckling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...