Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hyg Environ Health Adv ; 3: 100006, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37519421

RESUMO

The increasing frequency of zoonotic diseases is amongst several catastrophic repercussions of inadequate environmental management. Emergence, prevalence, and lethality of zoonotic diseases is intrinsically linked to environmental management which are currently at a destructive level globally. The effects of these links are complicated and interdependent, creating an urgent need of elucidating the role of environmental mismanagement to improve our resilience to future pandemics. This review focused on the pertinent role of forests, outdoor air, indoor air, solid waste and wastewater management in COVID-19 dissemination to analyze the opportunities prevailing to control infectious diseases considering relevant data from previous disease outbreaks. Global forest management is currently detrimental and hotspots of forest fragmentation have demonstrated to result in zoonotic disease emergences. Deforestation is reported to increase susceptibility to COVID-19 due to wildfire induced pollution and loss of forest ecosystem services. Detection of SARS-CoV-2 like viruses in multiple animal species also point to the impacts of biodiversity loss and forest fragmentation in relation to COVID-19. Available literature on air quality and COVID-19 have provided insights into the potential of air pollutants acting as plausible virus carrier and aggravating immune responses and expression of ACE2 receptors. SARS-CoV-2 is detected in outdoor air, indoor air, solid waste, wastewater and shown to prevail on solid surfaces and aerosols for prolonged hours. Furthermore, lack of protection measures and safe disposal options in waste management are evoking concerns especially in underdeveloped countries due to high infectivity of SARS-CoV-2. Inadequate legal framework and non-adherence to environmental regulations were observed to aggravate the postulated risks and vulnerability to future waves of pandemics. Our understanding underlines the urgent need to reinforce the fragile status of global environmental management systems through the development of strict legislative frameworks and enforcement by providing institutional, financial and technical supports.

2.
Sci Total Environ ; 744: 140946, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32687997

RESUMO

The coronavirus disease 2019 (COVID-19) is spreading globally having a profound effect on lives of millions of people, causing worldwide economic disruption. Curbing the spread of COVID-19 and future pandemics may be accomplished through understanding the environmental context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and adoption of effective detection tools and mitigation policies. This article aims to examine the latest investigations on SARS-CoV-2 plausible environmental transmission modes, employment of wastewater surveillance for early detection of COVID-19, and elucidating the role of solid waste, water, and atmospheric quality on viral infectivity. Transmission of SARS-CoV-2 via faecal-oral or bio-aerosols lacks robust evidence and remains debatable. However, improper disinfection and defected plumbing systems in indoor environments such as hospitals and high-rise towers may facilitate the transport of virus-laden droplets of wastewater causing infection. Clinical and epidemiological studies are needed to present robust evidence that SARS-CoV-2 is transmissible via aerosols, though quantification of virus-laden aerosols at low concentrations presents a challenge. Wastewater surveillance of SARS-CoV-2 can be an effective tool in early detection of outbreak and determination of COVID-19 prevalence within a population, complementing clinical testing and providing decision makers guidance on restricting or relaxing movement. While poor air quality increases susceptibility to diseases, evidence for air pollution impact on COVID-19 infectivity is not available as infections are dynamically changing worldwide. Solid waste generated by households with infected individuals during the lockdown period may facilitate the spread of COVID-19 via fomite transmission route but has received little attention from the scientific community. Water bodies receiving raw sewage may pose risk of infection but this has not been investigated to date. Overall, our understanding of the environmental perspective of SARS-CoV-2 is imperative to detecting outbreak and predicting pandemic severity, allowing us to be equipped with the right tools to curb any future pandemic.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , COVID-19 , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...