Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biotechnol ; 23(1): 51, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049781

RESUMO

BACKGROUND: Goat rumen microbial communities are perceived as one of the most potential biochemical reservoirs of multi-functional enzymes, which are applicable to enhance wide array of bioprocesses such as the hydrolysis of cellulose and hemi-cellulose into fermentable sugar for biofuel and other value-added biochemical production. Even though, the limited understanding of rumen microbial genetic diversity and the absence of effective screening culture methods have impeded the full utilization of these potential enzymes. In this study, we applied culture independent metagenomics sequencing approach to isolate, and identify microbial communities in goat rumen, meanwhile, clone and functionally characterize novel cellulase and xylanase genes in goat rumen bacterial communities. RESULTS: Bacterial DNA samples were extracted from goat rumen fluid. Three genomic libraries were sequenced using Illumina HiSeq 2000 for paired-end 100-bp (PE100) and Illumina HiSeq 2500 for paired-end 125-bp (PE125). A total of 435gb raw reads were generated. Taxonomic analysis using Graphlan revealed that Fibrobacter, Prevotella, and Ruminococcus are the most abundant genera of bacteria in goat rumen. SPAdes assembly and prodigal annotation were performed. The contigs were also annotated using the DOE-JGI pipeline. In total, 117,502 CAZymes, comprising endoglucanases, exoglucanases, beta-glucosidases, xylosidases, and xylanases, were detected in all three samples. Two genes with predicted cellulolytic/xylanolytic activities were cloned and expressed in E. coli BL21(DE3). The endoglucanases and xylanase enzymatic activities of the recombinant proteins were confirmed using substrate plate assay and dinitrosalicylic acid (DNS) analysis. The 3D structures of endoglucanase A and endo-1,4-beta xylanase was predicted using the Swiss Model. Based on the 3D structure analysis, the two enzymes isolated from goat's rumen metagenome are unique with only 56-59% similarities to those homologous proteins in protein data bank (PDB) meanwhile, the structures of the enzymes also displayed greater stability, and higher catalytic activity. CONCLUSIONS: In summary, this study provided the database resources of bacterial metagenomes from goat's rumen fluid, including gene sequences with annotated functions and methods for gene isolation and over-expression of cellulolytic enzymes; and a wealth of genes in the metabolic pathways affecting food and nutrition of ruminant animals.


Assuntos
Celulase , Celulases , Animais , Celulase/metabolismo , Metagenoma , Cabras/genética , Cabras/metabolismo , Cabras/microbiologia , Rúmen/metabolismo , Rúmen/microbiologia , Escherichia coli/genética , Bactérias , Celulases/genética , Celulose
2.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371503

RESUMO

Determining Secondary Structure Elements (SSEs) for any protein is crucial as an intermediate step for experimental tertiary structure determination. SSEs are identified using popular tools such as DSSP and STRIDE. These tools use atomic information to locate hydrogen bonds to identify SSEs. When some spatial atomic details are missing, locating SSEs becomes a hinder. To address the problem, when some atomic information is missing, three approaches for classifying SSE types using Cα atoms in protein chains were developed: (1) a mathematical approach, (2) a deep learning approach, and (3) an ensemble of five machine learning models. The proposed methods were compared against each other and with a state-of-the-art approach, PCASSO.


Assuntos
Aprendizado de Máquina , Proteínas , Proteínas/química , Estrutura Secundária de Proteína , Ligação de Hidrogênio , Algoritmos
3.
Biomolecules ; 13(3)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979343

RESUMO

Computational structural biology has demonstrated a key role in improving human health [...].


Assuntos
Biologia Computacional , Proteínas , Humanos , Simulação por Computador
4.
Bioinformatics ; 38(10): 2734-2741, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561171

RESUMO

SUMMARY: Topology determination is one of the most important intermediate steps toward building the atomic structure of proteins from their medium-resolution cryo-electron microscopy (cryo-EM) map. The main goal in the topology determination is to identify correct matches (i.e. assignment and direction) between secondary structure elements (SSEs) (α-helices and ß-sheets) detected in a protein sequence and cryo-EM density map. Despite many recent advances in molecular biology technologies, the problem remains a challenging issue. To overcome the problem, this article proposes a linear programming-based topology determination (LPTD) method to solve the secondary structure topology problem in three-dimensional geometrical space. Through modeling of the protein's sequence with the aid of extracting highly reliable features and a distance-based scoring function, the secondary structure matching problem is transformed into a complete weighted bipartite graph matching problem. Subsequently, an algorithm based on linear programming is developed as a decision-making strategy to extract the true topology (native topology) between all possible topologies. The proposed automatic framework is verified using 12 experimental and 15 simulated α-ß proteins. Results demonstrate that LPTD is highly efficient and extremely fast in such a way that for 77% of cases in the dataset, the native topology has been detected in the first rank topology in <2 s. Besides, this method is able to successfully handle large complex proteins with as many as 65 SSEs. Such a large number of SSEs have never been solved with current tools/methods. AVAILABILITY AND IMPLEMENTATION: The LPTD package (source code and data) is publicly available at https://github.com/B-Behkamal/LPTD. Moreover, two test samples as well as the instruction of utilizing the graphical user interface have been provided in the shared readme file. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Programação Linear , Proteínas , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas/química
5.
Biomolecules ; 11(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34944417

RESUMO

Cryo-electron microscopy (cryo-EM) is a structural technique that has played a significant role in protein structure determination in recent years. Compared to the traditional methods of X-ray crystallography and NMR spectroscopy, cryo-EM is capable of producing images of much larger protein complexes. However, cryo-EM reconstructions are limited to medium-resolution (~4-10 Å) for some cases. At this resolution range, a cryo-EM density map can hardly be used to directly determine the structure of proteins at atomic level resolutions, or even at their amino acid residue backbones. At such a resolution, only the position and orientation of secondary structure elements (SSEs) such as α-helices and ß-sheets are observable. Consequently, finding the mapping of the secondary structures of the modeled structure (SSEs-A) to the cryo-EM map (SSEs-C) is one of the primary concerns in cryo-EM modeling. To address this issue, this study proposes a novel automatic computational method to identify SSEs correspondence in three-dimensional (3D) space. Initially, through a modeling of the target sequence with the aid of extracting highly reliable features from a generated 3D model and map, the SSEs matching problem is formulated as a 3D vector matching problem. Afterward, the 3D vector matching problem is transformed into a 3D graph matching problem. Finally, a similarity-based voting algorithm combined with the principle of least conflict (PLC) concept is developed to obtain the SSEs correspondence. To evaluate the accuracy of the method, a testing set of 25 experimental and simulated maps with a maximum of 65 SSEs is selected. Comparative studies are also conducted to demonstrate the superiority of the proposed method over some state-of-the-art techniques. The results demonstrate that the method is efficient, robust, and works well in the presence of errors in the predicted secondary structures of the cryo-EM images.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Estrutura Secundária de Proteína , Máquina de Vetores de Suporte
6.
J Mol Graph Model ; 103: 107815, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338845

RESUMO

Cryo-electron microscopy (cryo-EM) has recently emerged as a prominent biophysical method for macromolecular structure determination. Many research efforts have been devoted to produce cryo-EM images, density maps, at near-atomic resolution. Despite many advances in technology, the resolution of the generated density maps may not be sufficiently adequate and informative to directly construct the atomic structure of proteins. At medium-resolution (∼4-10 Å), secondary structure elements (α-helices and ß-sheets) are discernible, whereas finding the correspondence of secondary structure elements detected in the density map with those on the sequence remains a challenging problem. In this paper, an automatic framework is proposed to solve α-helix correspondence problem in three-dimensional space. Through modeling of the sequence with the aid of a novel strategy, the α-helix correspondence problem is initially transformed into a complete weighted bipartite graph matching problem. An innovative correlation-based scoring function based on a well-known and robust statistical method is proposed for weighting the graph. Moreover, two local optimization algorithms, which are Greedy and Improved Greedy algorithms, have been presented to find α-helix correspondence. A widely used data set including 16 reconstructed and 4 experimental cryo-EM maps were chosen to verify the accuracy and reliability of the proposed automatic method. The experimental results demonstrate that the automatic method is highly efficient (86.25% accuracy), robust (11.3% error rate), fast (∼1.4 s), and works independently from cryo-EM skeleton.


Assuntos
Algoritmos , Proteínas , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Reprodutibilidade dos Testes
7.
Molecules ; 23(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360779

RESUMO

To take advantage of recent advances in genomics and proteomics it is critical that the three-dimensional physical structure of biological macromolecules be determined. Cryo-Electron Microscopy (cryo-EM) is a promising and improving method for obtaining this data, however resolution is often not sufficient to directly determine the atomic scale structure. Despite this, information for secondary structure locations is detectable. De novo modeling is a computational approach to modeling these macromolecular structures based on cryo-EM derived data. During de novo modeling a mapping between detected secondary structures and the underlying amino acid sequence must be identified. DP-TOSS (Dynamic Programming for determining the Topology Of Secondary Structures) is one tool that attempts to automate the creation of this mapping. By treating the correspondence between the detected structures and the structures predicted from sequence data as a constraint graph problem DP-TOSS achieved good accuracy in its original iteration. In this paper, we propose modifications to the scoring methodology of DP-TOSS to improve its accuracy. Three scoring schemes were applied to DP-TOSS and tested: (i) a skeleton-based scoring function; (ii) a geometry-based analytical function; and (iii) a multi-well potential energy-based function. A test of 25 proteins shows that a combination of these schemes can improve the performance of DP-TOSS to solve the topology determination problem for macromolecule proteins.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Conformação Proteica , Proteínas/química , Algoritmos , Microscopia Crioeletrônica , Relação Estrutura-Atividade
9.
J Comput Biol ; 25(1): 21-32, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29140718

RESUMO

The volumetric images produced by Cryo-Electron Microscopy (cryo-EM) technique are used to model macromolecular assemblies and machines. De novo protein modeling uses these images to computationally model the structure of the molecules. Many candidate conformations are usually generated during the intermediate step. Conventionally, each of these candidates is evaluated by time-consuming approaches such as potential energy. We introduce an initial version of a geometrical screening method that uses the skeleton of the cryo-EM images to evaluate candidate structures. The aim of this method is to reduce the number of native-like candidate conformations and, therefore, reduce the time required for structural evaluation by energy calculations. A test of two datasets was performed. The first dataset contains 10 proteins and shows that our method can successfully detect the correct native structure for the given skeleton among a set of different protein structures. The second dataset contains 12 proteins and shows that our method can filter slightly modified decoy conformations of the same protein. The efficiency of the method is also reported.


Assuntos
Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Conformação Proteica , Software , Animais , Biologia Computacional/métodos , Humanos , Imagem Individual de Molécula/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-26355788

RESUMO

Electron cryomicroscopy is becoming a major experimental technique in solving the structures of large molecular assemblies. More and more three-dimensional images have been obtained at the medium resolutions between 5 and 10 Å. At this resolution range, major α-helices can be detected as cylindrical sticks and ß-sheets can be detected as plain-like regions. A critical question in de novo modeling from cryo-EM images is to determine the match between the detected secondary structures from the image and those on the protein sequence. We formulate this matching problem into a constrained graph problem and present an O(Δ(2)N(2)2(N)) algorithm to this NP-Hard problem. The algorithm incorporates the dynamic programming approach into a constrained K-shortest path algorithm. Our method, DP-TOSS, has been tested using α-proteins with maximum 33 helices and α-ß proteins up to five helices and 12 ß-strands. The correct match was ranked within the top 35 for 19 of the 20 α-proteins and all nine α-ß proteins tested. The results demonstrate that DP-TOSS improves accuracy, time and memory space in deriving the topologies of the secondary structure elements for proteins with a large number of secondary structures and a complex skeleton.


Assuntos
Algoritmos , Biologia Computacional/métodos , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Estrutura Secundária de Proteína , Proteínas/química , Imageamento Tridimensional
11.
Artigo em Inglês | MEDLINE | ID: mdl-24384713

RESUMO

Cryo-electron microscopy is an experimental technique that is able to produce 3D gray-scale images of protein molecules. In contrast to other experimental techniques, cryo-electron microscopy is capable of visualizing large molecular complexes such as viruses and ribosomes. At medium resolution, the positions of the atoms are not visible and the process cannot proceed. The medium-resolution images produced by cryo-electron microscopy are used to derive the atomic structure of the proteins in de novo modeling. The skeletons of the 3D gray-scale images are used to interpret important information that is helpful in de novo modeling. Unfortunately, not all features of the image can be captured using a single segmentation. In this paper, we present a segmentation-free approach to extract the gray-scale curve-like skeletons. The approach relies on a novel representation of the 3D image, where the image is modeled as a graph and a set of volume trees. A test containing 36 synthesized maps and one authentic map shows that our approach can improve the performance of the two tested tools used in de novo modeling. The improvements were 62 and 13 percent for Gorgon and DP-TOSS, respectively.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Iluminação/métodos , Cor
12.
BMC Struct Biol ; 13 Suppl 1: S5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24565041

RESUMO

BACKGROUND: De novo protein modeling approaches utilize 3-dimensional (3D) images derived from electron cryomicroscopy (CryoEM) experiments. The skeleton connecting two secondary structures such as α-helices represent the loop in the 3D image. The accuracy of the skeleton and of the detected secondary structures are critical in De novo modeling. It is important to measure the length along the skeleton accurately since the length can be used as a constraint in modeling the protein. RESULTS: We have developed a novel computational geometric approach to derive a simplified curve in order to estimate the loop length along the skeleton. The method was tested using fifty simulated density images of helix-loop-helix segments of atomic structures and eighteen experimentally derived density data from Electron Microscopy Data Bank (EMDB). The test using simulated density maps shows that it is possible to estimate within 0.5 Å of the expected length for 48 of the 50 cases. The experiments, involving eighteen experimentally derived CryoEM images, show that twelve cases have error within 2 Å. CONCLUSIONS: The tests using both simulated and experimentally derived images show that it is possible for our proposed method to estimate the loop length along the skeleton if the secondary structure elements, such as α-helices, can be detected accurately, and there is a continuous skeleton linking the α-helices.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Biologia Computacional/métodos , Simulação por Computador , Sequências Hélice-Alça-Hélice , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína
13.
J Bioinform Comput Biol ; 10(3): 1242006, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22809382

RESUMO

The determination of the secondary structure topology is a critical step in deriving the atomic structure from the protein density map obtained from electron cryo-microscopy technique. This step often relies on the matching of two sources of information. One source comes from the secondary structures detected from the protein density map at the medium resolution, such as 5-10 Å. The other source comes from the predicted secondary structures from the amino acid sequence. Due to the inaccuracy in either source of information, a pool of possible secondary structure positions needs to be sampled. This paper studies the question, that is, how to reduce the computation of the mapping when the inaccuracy of the secondary structure predictions is considered. We present a method that combines the concept of dynamic graph with our previous work of using constrained shortest path to identify the topology of the secondary structures. We show a reduction of 34.55% of run-time as comparison to the naïve way of handling the inaccuracies. We also show an improved accuracy when the potential secondary structure errors are explicitly sampled verses the use of one consensus prediction. Our framework demonstrated the potential of developing computationally effective exact algorithms to identify the optimal topology of the secondary structures when the inaccuracy of the predicted data is considered.


Assuntos
Microscopia Crioeletrônica , Estrutura Secundária de Proteína , Proteínas/química , Algoritmos , Bases de Dados de Proteínas , Dobramento de Proteína
14.
J Bioinform Comput Biol ; 9(3): 415-30, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21714133

RESUMO

Electron cryo-microscopy is a fast advancing biophysical technique to derive three-dimensional structures of large protein complexes. Using this technique, many density maps have been generated at intermediate resolution such as 6-10 Å resolution. Although it is challenging to derive the backbone of the protein directly from such density maps, secondary structure elements such as helices and ß-sheets can be computationally detected. Our work in this paper provides an approach to enumerate the top-ranked possible topologies instead of enumerating the entire population of the topologies. This approach is particularly practical for large proteins. We developed a directed weighted graph, the topology graph, to represent the secondary structure assignment problem. We prove that the problem of finding the valid topology with the minimum cost is NP hard. We developed an O(N(2)2(N)) dynamic programming algorithm to identify the topology with the minimum cost. The test of 15 proteins suggests that our dynamic programming approach is feasible to work with proteins of much larger size than we could before. The largest protein in the test contains 18 helical sticks detected from the density map out of 33 helices in the protein.


Assuntos
Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Estrutura Secundária de Proteína , Fenômenos Biofísicos , Biologia Computacional , Gráficos por Computador , Simulação por Computador , Microscopia Crioeletrônica , Software
15.
BMC Bioinformatics ; 11 Suppl 1: S44, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20122218

RESUMO

BACKGROUND: The current advances in electron cryo-microscopy technique have made it possible to obtain protein density maps at about 6-10 A resolution. Although it is hard to derive the protein chain directly from such a low resolution map, the location of the secondary structures such as helices and strands can be computationally detected. It has been demonstrated that such low-resolution map can be used during the protein structure prediction process to enhance the structure prediction. RESULTS: We have developed an approach to predict the 3-dimensional structure for the helical skeletons that can be detected from the low resolution protein density map. This approach does not require the construction of the entire chain and distinguishes the structures based on the conformation of the helices. A test with 35 low resolution density maps shows that the highest ranked structure with the correct topology can be found within the top 1% of the list ranked by the effective energy formed by the helices. CONCLUSION: The results in this paper suggest that it is possible to eliminate the great majority of the bad conformations of the helices even without the construction of the entire chain of the protein. For many proteins, the effective contact energy formed by the secondary structures alone can distinguish a small set of likely structures from the pool.


Assuntos
Estrutura Secundária de Proteína , Proteínas/química , Microscopia Crioeletrônica/métodos , Bases de Dados de Proteínas , Dobramento de Proteína
16.
Int J Data Min Bioinform ; 3(3): 346-61, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19623775

RESUMO

Cyclic Coordinate Descent (CCD) is a popular robotic approach to generate a possible loop that closes the gap between two constrained portions of a protein chain (Canutescu and Dunbrack 2003). In this paper, we describe an effective Forward-Backward CCD (FBCCD) method to connect the two constrained portions of a protein chain without requiring the loop to converge. A test of 30 loops of length 4, 8 and 12 suggests that our method takes fewer number of cycles to produce loops of comparable accuracy and more accurate second portion of the chain, when it is compared to the CCD method.


Assuntos
Algoritmos , Modelos Moleculares , Proteínas/química , Biologia Computacional , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...