Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 356(2 Pt B): 454-61, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25304378

RESUMO

Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.


Assuntos
Proteína BRCA1/metabolismo , Neoplasias Encefálicas/patologia , Efeito Espectador/genética , Dano ao DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Glioma/patologia , Proteínas Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Efeito Espectador/efeitos da radiação , Proliferação de Células/efeitos da radiação , Quinase 1 do Ponto de Checagem , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Replicação do DNA/genética , Replicação do DNA/efeitos da radiação , Citometria de Fluxo , Glioma/genética , Glioma/metabolismo , Glioma/radioterapia , Humanos , Técnicas Imunoenzimáticas , Mutação/genética , Fosforilação/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Células Tumorais Cultivadas , Raios X
3.
Radiat Res ; 175(5): 588-98, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21361779

RESUMO

We have previously shown that the Ser15-phosphorylated p53 phosphoform, p53(Ser15), can localize at sites of ionizing radiation-induced DNA damage. In this study, we hypothesized that the non-specific DNA binding domain (NSDBD) of the p53 carboxy-terminus (C-terminus) mediates chromatin anchoring at sites of DNA damage to interact with two key mediators of the DNA damage response (DDR): ATM and 53BP1. Exogenous YFP-p53 fusion constructs expressing C-terminus deletion mutants of p53 were transfected into p53-null H1299 cells and tracked by microscopy and biochemistry to determine relative chromatin-binding pre- and postirradiation. We observed that exogenous YFP-p53(WT) and YFP-p53(Δ367-393) associated with ATM(Ser1981) and 53BP1 in the nuclear, chromatin-bound fractions after DNA damage. Of interest, YFP-p53(Δ1-299) fusion proteins, which lack transcriptional trans-activation and the Ser15-residue, bound to ATM(Ser1981) but not to 53BP1. In support of these data, we used subnuclear UV-microbeam and immunoprecipitation analyses of irradiated normal human fibroblasts (HDFs) that confirmed an interaction between endogenous p53 and ATM or 53BP1. Based on these observations, we propose a model whereby a pre-existing pool of p53 responds immediately to radiation-induced DNA damage using the C-terminus to spatially facilitate protein-protein interactions and the DDR at sites of DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular , Cromatina/metabolismo , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação/efeitos da radiação , Ligação Proteica/efeitos da radiação , Transporte Proteico/efeitos da radiação , Deleção de Sequência , Serina/metabolismo , Transdução de Sinais/efeitos da radiação , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
4.
Mutat Res ; 704(1-3): 68-77, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20079877

RESUMO

Understanding the effects of ionizing radiations are key to determining their optimal use in therapy and assessing risks from exposure. The development of microbeams where radiations can be delivered in a highly temporal and spatially constrained manner has been a major advance. Several different types of radiation microbeams have been developed using X-rays, charged particles and electrons. For charged particles, beams can be targeted with sub-micron accuracy into biological samples and the lowest possible dose of a single particle track can be delivered with high reproducibility. Microbeams have provided powerful tools for understanding the kinetics of DNA damage and formation under conditions of physiological relevance and have significant advantages over other approaches for producing localized DNA damage, such as variable wavelength laser beam approaches. Recent studies have extended their use to probing for radiosensitive sites outside the cell nucleus, and testing for mechanisms underpinning bystander responses where irradiated and non-irradiated cells communicate with each other. Ongoing developments include the ability to locally target regions of 3D tissue models and ultimately to target localized regions in vivo. With future advances in radiation delivery and imaging microbeams will continue to be applied in a range of biological studies.


Assuntos
Técnicas de Cultura de Células , Reparo do DNA , Radiação , Tecnologia Radiológica , Efeito Espectador , Dano ao DNA , Elétrons , Doses de Radiação , Radiação Ionizante , Tempo , Raios X
5.
Mol Cancer Ther ; 8(1): 203-13, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19139130

RESUMO

RAD51 is a key protein in the homologous recombination (HR) pathway of DNA double-strand break repair, and HR represents a novel target for cancer therapy. Because imatinib (Gleevec) has been reported to reduce RAD51 protein levels, we tested the clonogenic survival for RT112, H1299, PANC1, and PC3 tumor cell lines of varying p53 status and normal GM05757 normal fibroblasts after exposure to single agent imatinib (0-20 micromol/L; 0-72 hours). We also combined imatinib with DNA damaging agents that are toxic to RAD51-deficient cells, including ionizing radiation, gemcitabine, and mitomycin C. We observed decreased nuclear expression and chromatin binding of RAD51 protein following imatinib treatment. Imatinib also resulted in decreased error-free HR as determined by a flow cytometry-based integrated direct repeat-green fusion protein reporter system; this correlated to reduced RAD51 expression. Clonogenic survival experiments revealed increased cell kill for imatinib-treated cells in combination with ionizing radiation, gemcitabine, and mitomycin C, due in part to mitotic catastrophe. In experiments using imatinib and gemcitabine, tumor cell lines were sensitized to a greater extent than normal fibroblasts. This preservation of the therapeutic ratio was confirmed in vivo using PC3 xenograft growth delay and intestinal crypt cell clonogenic assays. HR inhibition may be an additional mechanism of action for the chemosensitization and radiosensitization of solid tumors with imatinib with preservation of the therapeutic ratio.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Tolerância a Radiação , Recombinação Genética/efeitos dos fármacos , Animais , Benzamidas , Linhagem Celular Tumoral , Humanos , Mesilato de Imatinib , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitose/efeitos dos fármacos , Neoplasias/patologia , Rad51 Recombinase/deficiência , Rad51 Recombinase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Res ; 65(23): 10810-21, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16322227

RESUMO

Despite a clear link between ataxia-telangiectasia mutated (ATM)-dependent phosphorylation of p53 and cell cycle checkpoint control, the intracellular biology and subcellular localization of p53 phosphoforms during the initial sensing of DNA damage is poorly understood. Using G0-G1 confluent primary human diploid fibroblast cultures, we show that endogenous p53, phosphorylated at Ser15 (p53Ser15), accumulates as discrete, dose-dependent and chromatin-bound foci within 30 minutes following induction of DNA breaks or DNA base damage. This biologically distinct subpool of p53Ser15 is ATM dependent and resistant to 26S-proteasomal degradation. p53Ser15 colocalizes and coimmunoprecipitates with gamma-H2AX with kinetics similar to that of biochemical DNA double-strand break (DNA-dsb) rejoining. Subnuclear microbeam irradiation studies confirm p53Ser15 is recruited to sites of DNA damage containing gamma-H2AX, ATM(Ser1981), and DNA-PKcs(Thr2609) in vivo. Furthermore, studies using isogenic human and murine cells, which express Ser15 or Ser18 phosphomutant proteins, respectively, show defective nuclear foci formation, decreased induction of p21WAF, decreased gamma-H2AX association, and altered DNA-dsb kinetics following DNA damage. Our results suggest a unique biology for this p53 phosphoform in the initial steps of DNA damage signaling and implicates ATM-p53 chromatin-based interactions as mediators of cell cycle checkpoint control and DNA repair to prevent carcinogenesis.


Assuntos
Dano ao DNA , DNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Hidrolases Anidrido Ácido , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Células HCT116 , Histonas/metabolismo , Humanos , Imunoprecipitação , Camundongos , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...