Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 3(1): 101171, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243368

RESUMO

Glucose tolerance test and glucose stimulated insulin secretion are important measures to determine glucose homeostasis and islet function and assess diabetes. Here, we provide a protocol where glucose tolerance test is used to study glucose homeostasis and insulin secretion in vivo, followed by islet isolation and glucose stimulated insulin secretion to determine islet function ex vivo. This protocol enables evaluation of glucose homeostasis and islets in mice which can also be applied to rat, beta cell lines and human studies. For complete details on the use and execution of this profile, please refer to Al Rijjal et al. (2021).


Assuntos
Ilhotas Pancreáticas , Animais , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Ratos
2.
iScience ; 24(8): 102909, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34458694

RESUMO

Omega-3 fatty acid prescription drugs, Vascepa (≥96% eicosapentaenoic acid [EPA] ethyl ester) and Lovaza (46.5% EPA and 37.5% docosahexaenoic acid ethyl ester) are known therapeutic regimens to treat hypertriglyceridemia. However, their impact on glucose homeostasis, progression to type 2 diabetes, and pancreatic beta cell function are not well understood. In the present study, mice were treated with Vascepa or Lovaza for one week prior to six weeks of high-fat diet feeding. Vascepa but not Lovaza led to reduced insulin resistance, reduced fasting insulin and glucose, and improved glucose intolerance. Vascepa improved beta cell function, reduced liver triglycerides with enhanced expression of hepatic fatty acid oxidation genes, and altered microbiota composition. Vascepa has protective effects on diet-induced insulin resistance and glucose intolerance in mice.

3.
Biomedicines ; 9(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34440212

RESUMO

A number of diverse G-protein signaling pathways have been shown to regulate insulin secretion from pancreatic ß-cells. Accordingly, regulator of G-protein signaling (RGS) proteins have also been implicated in coordinating this process. One such protein, RGS4, is reported to show both positive and negative effects on insulin secretion from ß-cells depending on the physiologic context under which it was studied. We here use an RGS4-deficient mouse model to characterize previously unknown G-protein signaling pathways that are regulated by RGS4 during glucose-stimulated insulin secretion from the pancreatic islets. Our data show that loss of RGS4 results in a marked deficiency in glucose-stimulated insulin secretion during both phase I and phase II of insulin release in intact mice and isolated islets. These deficiencies are associated with lower cAMP/PKA activity and a loss of normal calcium surge (phase I) and oscillatory (phase II) kinetics behavior in the RGS4-deficient ß-cells, suggesting RGS4 may be important for regulation of both Gαi and Gαq signaling control during glucose-stimulated insulin secretion. Together, these studies add to the known list of G-protein coupled signaling events that are controlled by RGS4 during glucose-stimulated insulin secretion and highlight the importance of maintaining normal levels of RGS4 function in healthy pancreatic tissues.

4.
Drug Discov Today ; 26(4): 982-992, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33476566

RESUMO

AI integration in plant-based traditional medicine could be used to overcome drug discovery challenges.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Medicina Tradicional/métodos , Fitoterapia/métodos , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Humanos
5.
Elife ; 92020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32748787

RESUMO

Approximately, 35% of women with Gestational Diabetes (GDM) progress to Type 2 Diabetes (T2D) within 10 years. However, links between GDM and T2D are not well understood. We used a well-characterised GDM prospective cohort of 1035 women following up to 8 years postpartum. Lipidomics profiling covering >1000 lipids was performed on fasting plasma samples from participants 6-9 week postpartum (171 incident T2D vs. 179 controls). We discovered 311 lipids positively and 70 lipids negatively associated with T2D risk. The upregulation of glycerolipid metabolism involving triacylglycerol and diacylglycerol biosynthesis suggested activated lipid storage before diabetes onset. In contrast, decreased sphingomyelines, hexosylceramide and lactosylceramide indicated impaired sphingolipid metabolism. Additionally, a lipid signature was identified to effectively predict future diabetes risk. These findings demonstrate an underlying dyslipidemia during the early postpartum in those GDM women who progress to T2D and suggest endogenous lipogenesis may be a driving force for future diabetes onset.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Diabetes Gestacional , Dislipidemias/complicações , Lipídeos/sangue , Adulto , Estudos de Coortes , Feminino , Seguimentos , Humanos , Lipogênese , Redes e Vias Metabólicas , Período Pós-Parto/sangue , Valor Preditivo dos Testes , Gravidez , Estudos Prospectivos , Fatores de Risco
7.
Diabetologia ; 62(4): 687-703, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30645667

RESUMO

AIMS/HYPOTHESIS: Gestational diabetes mellitus (GDM) affects up to 20% of pregnancies, and almost half of the women affected progress to type 2 diabetes later in life, making GDM the most significant risk factor for the development of future type 2 diabetes. An accurate prediction of future type 2 diabetes risk in the early postpartum period after GDM would allow for timely interventions to prevent or delay type 2 diabetes. In addition, new targets for interventions may be revealed by understanding the underlying pathophysiology of the transition from GDM to type 2 diabetes. The aim of this study is to identify both a predictive signature and early-stage pathophysiology of the transition from GDM to type 2 diabetes. METHODS: We used a well-characterised prospective cohort of women with a history of GDM pregnancy, all of whom were enrolled at 6-9 weeks postpartum (baseline), were confirmed not to have diabetes via 2 h 75 g OGTT and tested anually for type 2 diabetes on an ongoing basis (2 years of follow-up). A large-scale targeted lipidomic study was implemented to analyse ~1100 lipid metabolites in baseline plasma samples using a nested pair-matched case-control design, with 55 incident cases matched to 85 non-case control participants. The relationships between the concentrations of baseline plasma lipids and respective follow-up status (either type 2 diabetes or no type 2 diabetes) were employed to discover both a predictive signature and the underlying pathophysiology of the transition from GDM to type 2 diabetes. In addition, the underlying pathophysiology was examined in vivo and in vitro. RESULTS: Machine learning optimisation in a decision tree format revealed a seven-lipid metabolite type 2 diabetes predictive signature with a discriminating power (AUC) of 0.92 (87% sensitivity, 93% specificity and 91% accuracy). The signature was highly robust as it includes 45-fold cross-validation under a high confidence threshold (1.0) and binary output, which together minimise the chance of data overfitting and bias selection. Concurrent analysis of differentially expressed lipid metabolite pathways uncovered the upregulation of α-linolenic/linoleic acid metabolism (false discovery rate [FDR] 0.002) and fatty acid biosynthesis (FDR 0.005) and the downregulation of sphingolipid metabolism (FDR 0.009) as being strongly associated with the risk of developing future type 2 diabetes. Focusing specifically on sphingolipids, the downregulation of sphingolipid metabolism using the pharmacological inhibitors fumonisin B1 (FB1) and myriocin in mouse islets and Min6 K8 cells (a pancreatic beta-cell like cell line) significantly impaired glucose-stimulated insulin secretion but had no significant impact on whole-body glucose homeostasis or insulin sensitivity. CONCLUSIONS/INTERPRETATION: We reveal a novel predictive signature and associate reduced sphingolipids with the pathophysiology of transition from GDM to type 2 diabetes. Attenuating sphingolipid metabolism in islets impairs glucose-stimulated insulin secretion.


Assuntos
Biomarcadores/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Gestacional/sangue , Adulto , Animais , Área Sob a Curva , Asiático , Estudos de Casos e Controles , Árvores de Decisões , Diabetes Mellitus Tipo 2/etnologia , Diabetes Gestacional/etnologia , Progressão da Doença , Feminino , Teste de Tolerância a Glucose , Hispânico ou Latino , Humanos , Ilhotas Pancreáticas/metabolismo , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Período Pós-Parto , Gravidez , Estudos Prospectivos , Fatores de Risco , Esfingolipídeos/metabolismo , Estados Unidos
8.
Diabetes Obes Metab ; 21(1): 61-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30062833

RESUMO

AIM: Omega-3 fatty acid ethyl ester supplements, available by prescription, are common in the treatment of dyslipidaemia in humans. Recent studies show that 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), a metabolite formed from fish oil supplementation, was able to prevent and reverse high fat diet (HFD)-induced fatty liver in mice. In the present study, we investigated the underlying molecular mechanisms responsible for CMPF's hepatic lipid-lowering effects. MATERIALS AND METHODS: CD1 male mice were i.p. injected with CMPF (dosage, 6 mg/kg) for 7 days, followed by 5 weeks of a 60% HFD to induce a fatty liver phenotype. Metabolic parameters, liver morphology, lipid content, protein expression and microarray analysis were assessed. We also utilized primary hepatocytes, an in vitro model, to further investigate the direct effects of CMPF on hepatic lipid utilization and biosynthesis. RESULTS: CMPF-treated mice display enhanced hepatic lipid clearance while hepatic lipid storage is prevented, thereby protecting against liver lipid accumulation and development of HFD-induced hepatic insulin resistance. Mechanistically, as CMPF enters the liver, it acts as an allosteric acetyl-coA carboxylase (ACC) inhibitor, which directly induces both fatty acid oxidation and hepatic production of fibroblast growth factor 21 (FGF21). A feed-back loop is initiated by CMPF, which exists between ACC inhibition, fatty acid oxidation and production of FGF21. As a consequence, an adaptive decrease in Insig2/SREBP-1c/FAS protein expression results in priming of the liver to prevent a HFD-induced fatty liver phenotype. CONCLUSION: CMPF is a potential driver of hepatic lipid metabolism, preventing diet-induced hepatic lipid deposition and insulin resistance in the long term.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Furanos/farmacologia , Resistência à Insulina/fisiologia , Fígado , Propionatos/farmacologia , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Metabolismo dos Lipídeos , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos
9.
FASEB J ; 33(3): 3968-3984, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509117

RESUMO

γ-Aminobutyric acid (GABA) administration has been shown to increase ß-cell mass, leading to a reversal of type 1 diabetes in mice. Whether GABA has any effect on ß cells of healthy and prediabetic/glucose-intolerant obese mice remains unknown. In the present study, we show that oral GABA administration ( ad libitum) to mice indeed increased pancreatic ß-cell mass, which led to a modest enhancement in insulin secretion and glucose tolerance. However, GABA treatment did not further increase insulin-positive islet area in high fat diet-fed mice and was unable to prevent or reverse glucose intolerance and insulin resistance. Mechanistically, whether in vivo or in vitro, GABA treatment increased ß-cell proliferation. In vitro, the effect was shown to be mediated via the GABAA receptor. Single-cell RNA sequencing analysis revealed that GABA preferentially up-regulated pathways linked to ß-cell proliferation and simultaneously down-regulated those networks required for other processes, including insulin biosynthesis and metabolism. Interestingly, single-cell differential expression analysis revealed GABA treatment gave rise to a distinct subpopulation of ß cells with a unique transcriptional signature, including urocortin 3 ( ucn3), wnt4, and hepacam2. Taken together, this study provides new mechanistic insight into the proliferative nature of GABA but suggests that ß-cell compensation associated with prediabetes overlaps with, and negates, its proliferative effects.-Untereiner, A., Abdo, S., Bhattacharjee, A., Gohil, H., Pourasgari, F., Ibeh, N., Lai, M., Batchuluun, B., Wong, A., Khuu, N., Liu, Y., Al Rijjal, D., Winegarden, N., Virtanen, C., Orser, B. A., Cabrera, O., Varga, G., Rocheleau, J., Dai, F. F., Wheeler, M. B. GABA promotes ß-cell proliferation, but does not overcome impaired glucose homeostasis associated with diet-induced obesity.


Assuntos
Proliferação de Células , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidade/metabolismo , Transcriptoma , Ácido gama-Aminobutírico/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Homeostase , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Receptores de GABA-A/metabolismo , Urocortinas/metabolismo
10.
Diabetes ; 67(5): 885-897, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29436377

RESUMO

Specific circulating metabolites have emerged as important risk factors for the development of diabetes. The acylcarnitines (acylCs) are a family of metabolites known to be elevated in type 2 diabetes (T2D) and linked to peripheral insulin resistance. However, the effect of acylCs on pancreatic ß-cell function is not well understood. Here, we profiled circulating acylCs in two diabetes cohorts: 1) women with gestational diabetes mellitus (GDM) and 2) women with recent GDM who later developed impaired glucose tolerance (IGT), new-onset T2D, or returned to normoglycemia within a 2-year follow-up period. We observed a specific elevation in serum medium-chain (M)-acylCs, particularly hexanoyl- and octanoylcarnitine, among women with GDM and individuals with T2D without alteration in long-chain acylCs. Mice treated with M-acylCs exhibited glucose intolerance, attributed to impaired insulin secretion. Murine and human islets exposed to elevated levels of M-acylCs developed defects in glucose-stimulated insulin secretion and this was directly linked to reduced mitochondrial respiratory capacity and subsequent ability to couple glucose metabolism to insulin secretion. In conclusion, our study reveals that an elevation in circulating M-acylCs is associated with GDM and early stages of T2D onset and that this elevation directly impairs ß-cell function.


Assuntos
Carnitina/análogos & derivados , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/metabolismo , Intolerância à Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Adulto , Animais , Carnitina/metabolismo , Carnitina/farmacologia , Estudos de Casos e Controles , Respiração Celular/efeitos dos fármacos , Progressão da Doença , Feminino , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Período Pós-Parto , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...