Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1329313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711954

RESUMO

Introduction: The availability of proactive techniques for health monitoring is essential to reducing fetal mortality and avoiding complications in fetal wellbeing. In harsh circumstances such as pandemics, earthquakes, and low-resource settings, the incompetence of many healthcare systems worldwide in providing essential services, especially for pregnant women, is critical. Being able to continuously monitor the fetus in hospitals and homes in a direct and fast manner is very important in such conditions. Methods: Monitoring the health of the baby can potentially be accomplished through the computation of vital bio-signal measures using a clear fetal electrocardiogram (ECG) signal. The aim of this study is to develop a framework to detect and identify the R-peaks of the fetal ECG directly from a 12 channel abdominal composite signal. Thus, signals were recorded noninvasively from 70 pregnant (healthy and with health conditions) women with no records of fetal abnormalities. The proposed model employs a recurrent neural network architecture to robustly detect the fetal ECG R-peaks. Results: To test the proposed framework, we performed both subject-dependent (5-fold cross-validation) and independent (leave-one-subject-out) tests. The proposed framework achieved average accuracy values of 94.2% and 88.8%, respectively. More specifically, the leave-one-subject-out test accuracy was 86.7% during the challenging period of vernix caseosa layer formation. Furthermore, we computed the fetal heart rate from the detected R-peaks, and the demonstrated results highlight the robustness of the proposed framework. Discussion: This work has the potential to cater to the critical industry of maternal and fetal healthcare as well as advance related applications.

2.
Front Cardiovasc Med ; 9: 926965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966548

RESUMO

In the last two decades, stillbirth has caused around 2 million fetal deaths worldwide. Although current ultrasound tools are reliably used for the assessment of fetal growth during pregnancy, it still raises safety issues on the fetus, requires skilled providers, and has economic concerns in less developed countries. Here, we propose deep coherence, a novel artificial intelligence (AI) approach that relies on 1 min non-invasive electrocardiography (ECG) to explain the association between maternal and fetal heartbeats during pregnancy. We validated the performance of this approach using a trained deep learning tool on a total of 941 one minute maternal-fetal R-peaks segments collected from 172 pregnant women (20-40 weeks). The high accuracy achieved by the tool (90%) in identifying coupling scenarios demonstrated the potential of using AI as a monitoring tool for frequent evaluation of fetal development. The interpretability of deep learning was significant in explaining synchronization mechanisms between the maternal and fetal heartbeats. This study could potentially pave the way toward the integration of automated deep learning tools in clinical practice to provide timely and continuous fetal monitoring while reducing triage, side-effects, and costs associated with current clinical devices.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 604-607, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018061

RESUMO

Beat-by-beat maternal and fetal heart couplings were reported to be evident throughout the fetal development. However, it is still unknown whether maternal-fetal heartbeat coupling parameters are associated with fetal development, and the potential interrelationships. Therefore, this study aims to investigate the associations of coupling parameters with fetal gestational age by multivariate regression models. Ten min abdominal lead-based maternal and fetal ECG signals were collected from 16 healthy pregnant women with healthy singleton pregnancies (19-32 weeks). Maternal and Fetal Heart Rate Variability (MHRV and FHRV) values as well as maternal-fetal heart rate coupling (strength, measured by A) parameters at various coupling ratios (associated with different Maternal:Fetal heartbeat ratios of 1:2, 1:3, 2:3, 2:4, 3:4, and 3:5) were calculated. Based on those features stepwise multivariate regression models were constructed by validating against the gold standard gestational age identified by crown-rump length from doppler echocardiogram. Among all models, the best model (Root Mean Square Error, RMSE=1.92) was found to be significantly (p<0.05) associated with mean fetal heart rate, mean maternal heart rate, standard deviation of maternal heart rate, λ[1:3], λ[2:3], λ[2:4]. Correlation coefficients and Bland Altman plots were constructed to statistically validate the results. The model developed based on coupling parameters only, showed the second-best performance (RMSE=2.50). Therefore, combining maternal and fetal heart rate variability parameters with maternal-fetal heart rate coupling values (rather than considering FHRV or MHRV parameters only) is found to be better associated with fetal development.Clinical relevance- This is a brief additional statement on why this might be of interest to practicing clinicians. Example: This establishes the anesthetic efficacy of 10% intraosseous injections with epinephrine to positively influence cardiovascular function.


Assuntos
Coração Fetal , Frequência Cardíaca Fetal , Eletrocardiografia , Feminino , Desenvolvimento Fetal , Idade Gestacional , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...