Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biomedicines ; 11(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831009

RESUMO

On a global scale, lung cancer is acknowledged to be the major driver of cancer death attributable to treatment challenges and poor prognosis. Classical cancer treatment regimens, such as chemotherapy or radiotherapy, can be used to treat lung cancer, but the appended adverse effects limit them. Because of the numerous side effects associated with these treatment modalities, it is crucial to strive to develop novel and better strategies for managing lung cancer. Attributes such as enhanced bioavailability, better in vivo stability, intestinal absorption pattern, solubility, prolonged and targeted distribution, and the superior therapeutic effectiveness of numerous anticancer drugs have all been boosted with the emergence of nano-based therapeutic systems. Lipid-based polymeric and inorganic nano-formulations are now being explored for the targeted delivery of chemotherapeutics for lung cancer treatment. Nano-based approaches are pioneering the route for primary and metastatic lung cancer diagnosis and treatment. The implementation and development of innovative nanocarriers for drug administration, particularly for developing cancer therapies, is an intriguing and challenging task in the scientific domain. The current article provides an overview of the delivery methods, such as passive and active targeting for chemotherapeutics to treat lung cancer. Combinatorial drug therapy and techniques to overcome drug resistance in lung cancer cells, as potential ways to increase treatment effectiveness, are also discussed. In addition, the clinical studies of the potential therapies at different stages and the associated challenges are also presented. A summary of patent literature has also been included to keep readers aware of the new and innovative nanotechnology-based ways to treat lung cancer.

2.
PeerJ ; 10: e13219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35415012

RESUMO

Background: Coronavirus infection (COVID-19) has resulted in an unprecedented number of human deaths and economic losses. Analyzing the role of disease in different groups of people is useful for determining the burden of disease. As a result, the purpose of this study was to investigate the influence of COVID-19 on the Saudi Arabian population's quality of life, with a particular emphasis on the likely fall in their life expectancy. Methods: A cross-sectional and retrospective analysis of 2,988 patients' databases was performed to assess COVID-19-induced mortality and complications in the community. The data was gathered from official websites that track the disease's impact daily between July and October 2021. On the acquired data, disability-adjusted life years (DALYs) and relative risk analysis were performed. The data was statistically analyzed using SPSS IBM 25. The Pearson's correlation test was used to examine the relationship between age and disease impact. The significance of the findings was determined by using a P value of less than 0.05. Results: The data from the study indicated that the positive test rate, infection rate, and mortality rate in the population were 1.84% [+0.11/-0.39 of 95% confidence interval (CI)], 1.54% (+0.38/-0.52 of CI), and 1.59% (+0.4/-0.7 of CI), respectively. Highest percentage of mortality was observed in Riyadh (17%), followed by Jeddah (8.7%) and Makkah (7.5%). The DALYs/100,000 inhabitants increased progressively as the age of the population increased, and the highest value was found for those over 70 years old (25.73 ± 2.09). Similarly, the risk outcome (55%) increased significantly (p = 0.037) from 40 years onwards, and the maximum was observed at above 70 years (184%, p = 0.006). The correlation analysis indicated a significant association (p = 0.032) between age and COVID-19 induced mortality from the 40-year-old population onwards. Conclusion: The current study found that the COVID-19 load in Saudi Arabia was comparable to that in nations that were said to have performed well during the pandemic. DALYs increased from 40 years to 60 years, although people over 60 years had a lower life expectancy and were more susceptible to infection. After 60 years, the occurrence of numerous co-morbid illnesses may have added to the population's burden of COVID-19. Further research in this area may yield a more precise estimate of the COVID-19-induced burden on the entire population.


Assuntos
COVID-19 , Humanos , Idoso , Adulto , Arábia Saudita/epidemiologia , COVID-19/epidemiologia , Qualidade de Vida , Estudos Retrospectivos , Estudos Transversais , Carga Global da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...