Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400420, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751057

RESUMO

Global water scarcity is leading to increasingly tense competition across populations. In order to complement the largely fast-depleting fresh water sources and mitigate the challenges generated by brine discharge from desalination, atmospheric water harvesting (AWH) has emerged to support long-term water supply. This work presents a novel alginate-based hybrid material comprised of porous silico-aluminophosphate-34 (SAPO-34) as fast-transport channel medium as well as hydrophilicity and stability enhancer, and graphene-based sheets as light absorber for solar-enabled evaporation, both optimally incorporated in an alginate matrix, resulting in a composite sorbent capable of harvesting water from the atmosphere with a record intake of up to 6.85 gw gs -1. Natural sunlight is solely used to enable desorption achieving increase of the temperature of the developed network up to 60 °C and resulting in release of the sorbed water, with impurities content well below the World Health Organization (WHO) upper limits. After 30 cycles of sorption and desorption, the composite hydrogel displayed unchanged water uptake and stability. This work provides an impactful perspective toward sustainable generation of water from humidity without external energy consumption supporting the emergence of alternative water production solutions.

2.
ACS Appl Mater Interfaces ; 16(20): 26142-26152, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718256

RESUMO

Water is readily available nearly anywhere as vapor. Thus, atmospheric water harvesting (AWH) technologies are seen as a promising solution to support sustainable water production. This work reports a novel semi-interpenetrating network, which integrates poly(pyrrole) doped with a hygroscopic salt and 2D graphene-based nanosheets optimally assembled within an alginate matrix, capable of harvesting water from the atmosphere with a record intake of up to 7.15 gw/gs. Owing to the incorporated graphene nanosheets, natural sunlight was solely used to enable desorption, achieving an increase of the temperature of the developed network of up to 71 °C within 20 min, resulting in a water yield of 3.36 L/kgS in each cycle with quality well within the World Health Organization standard ranges. Notably, after 30 cycles of sorption and desorption, the composite hydrogel displayed unchanged water uptake and stability. This study demonstrates that atmospheric water vapor as a complementary source of water can be harvested sustainably and effectively at a minimal cost and without external energy input.

3.
Nat Commun ; 12(1): 4334, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267194

RESUMO

Structural and morphological control of crystalline nanoparticles is crucial in the field of heterogeneous catalysis and the development of "reaction specific" catalysts. To achieve this, colloidal chemistry methods are combined with ab initio calculations in order to define the reaction parameters, which drive chemical reactions to the desired crystal nucleation and growth path. Key in this procedure is the experimental verification of the predicted crystal facets and their corresponding electronic structure, which in case of nanostructured materials becomes extremely difficult. Here, by employing 31P solid-state nuclear magnetic resonance aided by advanced density functional theory calculations to obtain and assign the Knight shifts, we succeed in determining the crystal and electronic structure of the terminating surfaces of ultrafine Ni2P nanoparticles at atomic scale resolution. Our work highlights the potential of ssNMR nanocrystallography as a unique tool in the emerging field of facet-engineered nanocatalysts.

4.
Front Chem ; 8: 568669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134273

RESUMO

Aluminophosphate, AlPO4-5, an AFI zeotype framework consisting of one-dimensional parallel micropores, and metal-substituted AlPO4-5 were prepared and studied for CO2 adsorption. Preparation of AlPO4-5 by using different activation methods (calcination and pyrolysis), incorporation of different metals/ions (Fe, Mg, Co, and Si) into the framework using various concentrations, and manipulation of the reaction mixture dilution rate and resulting crystal morphology were examined in relation to the CO2 adsorption performance. Among the various metal-substituted analogs, FeAPO-5 was found to exhibit the highest CO2 capacity at all pressures tested (up to 4 bar). Among the Fe-substituted samples, xFeAPO-5, with x being the Fe/Al2O3 molar ratio in the synthesis mixture (range of 2.5:100-10:100), 5FeAPO-5 exhibited the highest capacity (1.8 mmol/g at 4 bar, 25°C) with an isosteric heat of adsorption of 23 kJ/mol for 0.08-0.36 mmol/g of CO2 loading. This sample also contained the minimum portion of extra-framework or clustered iron and the highest mesoporosity. Low water content in the synthesis gel led to the formation of spherical agglomerates of small 2D-like crystallites that exhibited higher adsorption capacity compared to columnar-like crystals produced by employing more dilute mixtures. CO2 adsorption kinetics was found to follow a pseudo-first-order model. The robust nature of AlPO4-5-based adsorbents, their unique one-dimensional pore configuration, fast kinetics, and low heat of adsorption make them promising for pressure swing adsorption of CO2 at industrial scale.

5.
Angew Chem Int Ed Engl ; 57(48): 15707-15711, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30335209

RESUMO

While bottom-up syntheses of ordered nanostructured materials at colloidal length scales have been successful at producing close-packed materials, it is more challenging to synthesize non-close-packed (ncp) structures. Here, a metal oxide nanostructure with ncp hollow sphere arrays was synthesized by combining a polymeric colloidal crystal template (CCT) with a Pechini precursor. The CCT provided defined confinement through its tetrahedral (Td ) and octahedral (Oh ) voids where the three-dimensionally (3D) ordered, ncp hollow sphere arrays formed as a result of a crystallization-induced rearrangement. This nanostructure, consisting of alternating, interconnected large and small hollow spheres, is distinct from the inverse opal structures typically generated from these CCTs. The morphology of the ncp hollow sphere arrays was retained in pseudomorphic transformations involving sulfidation and reoxidation cycling despite the segregation of zinc during these steps.

6.
Science ; 336(6089): 1684-7, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22745424

RESUMO

Hierarchical zeolites are a class of microporous catalysts and adsorbents that also contain mesopores, which allow for fast transport of bulky molecules and thereby enable improved performance in petrochemical and biomass processing. We used repetitive branching during one-step hydrothermal crystal growth to synthesize a new hierarchical zeolite made of orthogonally connected microporous nanosheets. The nanosheets are 2 nanometers thick and contain a network of 0.5-nanometer micropores. The house-of-cards arrangement of the nanosheets creates a permanent network of 2- to 7-nanometer mesopores, which, along with the high external surface area and reduced micropore diffusion length, account for higher reaction rates for bulky molecules relative to those of other mesoporous and conventional MFI zeolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...