Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 11: 572702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424918

RESUMO

The emergence of a new coronavirus (CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for severe respiratory disease in humans termed coronavirus disease of 2019 (COVID-19), became a new global threat for health and the economy. The SARS-CoV-2 genome is about a 29,800-nucleotide-long plus-strand RNA that can form functionally important secondary and higher-order structures called cis-acting RNA elements. These elements can interact with viral proteins, host proteins, or other RNAs and be involved in regulating translation and replication processes of the viral genome and encapsidation of the virus. However, the cis-acting RNA elements and their biological roles in SARS-CoV-2 as well as their comparative analysis in the closely related viral genome have not been well explored, which is very important to understand the molecular mechanism of viral infection and pathogenies. In this study, we used a bioinformatics approach to identify the cis-acting RNA elements in the SARS-CoV-2 genome. Initially, we aligned the full genomic sequence of six different CoVs, and a phylogenetic analysis was performed to understand their evolutionary relationship. Next, we predicted the cis-acting RNA elements in the SARS-CoV-2 genome using the structRNAfinder tool. Then, we annotated the location of these cis-acting RNA elements in different genomic regions of SARS-CoV-2. After that, we analyzed the sequence conservation patterns of each cis-acting RNA element among the six CoVs. Finally, the presence of cis-acting RNA elements across different CoV genomes and their comparative analysis was performed. Our study identified 12 important cis-acting RNA elements in the SARS-CoV-2 genome; among them, Corona_FSE, Corona_pk3, and s2m are highly conserved across most of the studied CoVs, and Thr_leader, MAT2A_D, and MS2 are uniquely present in SARS-CoV-2. These RNA structure elements can be involved in viral translation, replication, and encapsidation and, therefore, can be potential targets for better treatment of COVID-19. It is imperative to further characterize these cis-acting RNA elements experimentally for a better mechanistic understanding of SARS-CoV-2 infection and therapeutic intervention.

2.
PLoS One ; 14(11): e0224806, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725736

RESUMO

The cost-effectiveness of next-generation sequencing (NGS) has led to the advancement of genomic research, thereby regularly generating a large amount of raw data that often requires efficient infrastructures such as data centers to manage the storage and transmission of such data. The generated NGS data are highly redundant and need to be efficiently compressed to reduce the cost of storage space and transmission bandwidth. We present a lossless, non-reference-based FASTQ compression algorithm, known as LFastqC, an improvement over the LFQC tool, to address these issues. LFastqC is compared with several state-of-the-art compressors, and the results indicate that LFastqC achieves better compression ratios for important datasets such as the LS454, PacBio, and MinION. Moreover, LFastqC has a better compression and decompression speed than LFQC, which was previously the top-performing compression algorithm for the LS454 dataset. LFastqC is freely available at https://github.uconn.edu/sya12005/LFastqC.


Assuntos
Compressão de Dados , Sequenciamento de Nucleotídeos em Larga Escala , Software , Algoritmos , Bases de Dados como Assunto
3.
J Comput Biol ; 24(4): 280-288, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27960065

RESUMO

Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016 ).


Assuntos
Algoritmos , Compressão de Dados/métodos , Análise de Sequência de DNA/métodos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...