Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732394

RESUMO

Soil salinity hampers durum wheat plant growth and development at various stages. The detrimental effects of salinity on plant cellular and physiological processes necessitate strategies to alleviate its negative impact and improve overall crop yield. This study investigates the efficacy of plant growth-promoting rhizobacteria (PGPR) bacteria inoculation in mitigating salinity stress on two durum wheat genotypes with contrasting degrees of salinity tolerance (Tamaroi, salt-sensitive and Line 5004, salt-tolerant) under greenhouse and field conditions. For this purpose, two halotolerant-PGPR strains, Pseudomonas jordanii strain G34 and Oceanobacillus jordanicus strain GSFE11, were utilized for the inoculation. For the greenhouse experiment, the two selected genotypes were subjected to salinity at the flag leaf stage with continuous irrigation with a Hoagland solution supplemented with 50 mM NaCl. Field experiments were conducted across two locations with contrasting salinity levels over two growing seasons. At the end of both experiments, various parameters including total weight, spike weight, grain weight, spike number, spikelet number, grains per spike and thousand kernel weight were measured. The halotolerant PGPRs, P. jordanii strain G34 and O. jordanicus strain GSFE11, proved effective in alleviating salinity-induced adverse effects and enhancing growth under greenhouse and field conditions. However, bacterial inoculation significantly improved growth in the salt-sensitive genotype and such effects were not observed in the tolerant genotype, emphasizing genotype-specific responses. Notably, inoculation with O. jordanicus increased Na+ and Ca2+ uptake in the salt-tolerant "Line 5004" without hindering growth, suggesting one of its potential mechanisms for salt tolerance. This research demonstrates the potential of halotolerant-PGPR inoculation in enhancing durum wheat production in saline environments, but also underscores the importance of understanding genotype-specific responses for tailored interventions.

2.
Plant Dis ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514441

RESUMO

Over the last decade, field assessments of the yellow rust differential lines for resistance genes Yr10 and Yr24 and race analysis in the Middle East have demonstrated efficient yellow rust control by Yr10 and Yr24 (=Yr26). Yellow rust samples collected during 2018-21 in Central West Asia & North and sub-Saharan Africa underwent race analysis at the Regional Cereal Rust Research Center in Izmir, Türkiye. The infected leaf segments were subjected to rehydration at 20°C for three hours. Subsequently, the leaf segments were rubbed on the first leaves of seedlings of susceptible cultivar Morocco. Inoculated seedlings were placed at 10°C in dark conditions with 95% humidity for 24 hrs, then moved to a growth chamber with a 16-hr light (220 µmolm-2s-1) cycle at 15°C and an eight-hour dark period at 12°C. Urediniospores were collected 15 days post-inoculation. A set of yellow rust differential lines including Morocco, Avocet 'S', Avocet 'R', Yr1/6* Avocet 'S', Kalyansona (Yr2), Vilmorin 23 (Yr3), Hybrid 46 (Yr4), Yr6/6* Avocet 'S', Yr7/6* Avocet 'S', Yr8/6* Avocet 'S', Yr9/6* Avocet 'S', Yr10/6* Avocet 'S', Moro (Yr10+), Yr17/6*Avocet 'S', Yr24/6* Avocet 'S', TP1295 (Yr25), Yr27/6* Avocet 'S', YrSp/6* Avocet 'S', Spalding Prolific (YrSP), Strubes Dickkopf (YrSD), Tres/6*Avocet'S', Cham 1, and Ambition was used in race analysis. A mixture of 2 mL Soltrol® and 0.5 mg fresh urediniospores was used to inoculate 10-day-old seedlings of the 23 differential varieties. Pre-inoculation, incubation, and post-inoculation conditions were the same as above. Seedling infection types (ITs) were recorded 15 days post-inoculation on a scale of 0 to 9 (McNeal et al. 1971), where ITs 0 to 6 are classified as low infection types (LITs= avirulent) and ITs 7 to 9 categorized as high infection types (HITs= virulent). HITs of 7 to 9 were observed for the first time on Yr10/6* Avocet 'S', Yr24/6* Avocet 'S', as well as on Moro (Yr10+) for 25 sample of the total 50 isolates from Lebanon and Türkiye in 2018. During the race analysis in 2019 to 2021, virulence for Yr10 and Yr24 was identified among tested samples from Egypt, Lebanon, Jordan, Syria, and Türkiye, indicating the expansion of virulence for Yr10 and Yr24 into new regions. HITs were observed for the durum wheat cultivar Cham 1 and wheat cultivar Ambition in all races. Virulence for YrA, Yr2, Yr6, Yr7, Yr8, Yr17, and 32 was common within the Yr10 and Yr24 virulent races, and virulence for YrSp and Yr27 were observed in low frequency. Molecular genotyping of 209 isolates, including the Yr10 virulent races, was performed using 19 microsatellite markers (Ali et al. 2017; Rodriguez-Algaba et al. 2017) and aligned with the Puccinia striiformis nomenclature system of the Global Rust Reference Center (GRRC). The results showed that 66 isolates were identical to the genotyping lineage "ME2018" identified in Egypt in 2018 by GRRC. This genetic lineage has now been designated as PstS17 (Hovmøller et al. 2023). The durum wheat cultivars have always been resistant to yellow rust in the Middle East. Seedling tests of 50 durum advanced lines from CIMMYT's International Durum Wheat Yield Nursery showed LITs in 45 accessions (90%) against an avirulent race for Yr10 and Yr24 (PstS2), but only 12% remained resistant while tested with a PstS17 (virulent for Yr10 and Yr24). This observation provides compelling evidence of the Yr10 and/or Yr24 presence within tested durum wheat germplasm. Continued monitoring of virulence and resistance of wheat germplasm to yellow rust is critical for successful breeding for rust resistance.

3.
J Exp Bot ; 75(1): 316-333, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702385

RESUMO

Durum wheat is a staple food in the Mediterranean Basin, mostly cultivated under rainfed conditions. As such, the crop is often exposed to moisture stress. Therefore, the identification of genetic factors controlling the capacity of genotypes to convert moisture into grain yield (i.e., water productivity) is quintessential to stabilize production despite climatic variations. A global panel of 384 accessions was tested across 18 Mediterranean environments (in Morocco, Lebanon, and Jordan) representing a vast range of moisture levels. The accessions were assigned to water responsiveness classes, with genotypes 'Responsive to Low Moisture' reaching an average +1.5 kg ha-1 mm-1 yield advantage. Genome wide association studies revealed that six loci explained most of this variation. A second validation panel tested under moisture stress confirmed that carrying the positive allele at three loci on chromosomes 1B, 2A, and 7B generated an average water productivity gain of +2.2 kg ha-1 mm-1. These three loci were tagged by kompetitive allele specific PCR (KASP) markers, and these were used to screen a third independent validation panel composed of elites tested across moisture stressed sites. The three KASP combined predicted up to 10% of the variation for grain yield at 60% accuracy. These loci are now ready for molecular pyramiding and transfer across cultivars to improve the moisture conversion of durum wheat.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Estudo de Associação Genômica Ampla , Água , Grão Comestível/genética , Genômica
4.
Plant Dis ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105457

RESUMO

Fusarium crown rot (FCR) is a disease caused by numerous Fusarium species, primarily F. culmorum (W. G. Sm.) Sacc., F. pseudograminearum (O'Donnell & T. Aoki), and F. graminearum Schwabe (Paulitz et al., 200). FCR on wheat is a worldwide distributed disease that causes significant yield losses. In the Middle East, FCR was reported in Iraq (Motallebi et al., 2015; Matny et al., 2019) and Syria (Motallebi et al., 2015). In Jordan, Fusarium occurrence on wheat was documented in a checklist publication in 1984 (Mamluk et al., 1984) without further identification of the causative species and its pathogenicity level. There have been no other reports of Fusarium on wheat in Jordan since then. Symptoms of Fusarium crown rot were observed in 2016-2022 (Alananbeh et al., 2018) across Jordan through annual surveys of wheat diseases. The disease severity was higher in the dry seasons such as that of 2017 and 2021. Very severe symptoms were noted on wheat planted at the University of Jordan experimental wheat plots (n=4) in 2016-2022. A total of 40 symptomatic plants were randomly collected from these plots. Roots and stems of the 40 plants were then cut into small sections, disinfected in 0.5% hypochlorite for 5 minutes, 70% ethanol for one minute, and finally rinsed in sterile distilled water three times. The sections were dried under the laminar flow, plated on potato dextrose agar (PDA), and incubated for 10 -14 days at 25 ℃. The fungal cultures were purified by hyphal tipping. At least one pure isolate exhibited a typical morphology of F. culmorum was recovered from each plant. The colonies of pure cultures grew rapidly on PDA with fluffy floccose aerial mycelium and dark red to reddish brown pigment diffused in the agar. The isolates produced monophialidic conidiogenous cells. The formed marcoconidia were slightly curved, with pointed apical and foot cells, 3-5 septated, on average 28.5 - 46.5 X 4.5-7.0 µm, indication the cultures as Fusarium spp. (Figure 1). Chlamydospores were intercalary in hyphae and microconidia were absent. Two representative isolates (Iso-1 and Iso-2) identified putatively as F. culmorum, based on their morphological features, were sent to Macrogen Inc., South Korea to Sanger sequence a portion of the translation elongation factor 1-α gene using the EF1/EF2 primers (Geiser et al. 2004). Raw sequences were used to create consensus sequences using the BioEdit sequence alignment editor. The consensus sequences for the two representatives isolates were used to conduct BLASTn queries of NCBI (https://www.ncbi.nlm.nih.gov) which revealed they are 99.67% and 100% identical to MW233082.1, a TEF11-α sequence of the ex-epitype of F. culmorum (NRRL 25475, Crous et al. 2021). The two sequences generated herein were accessioned in GenBank (accession numbers: OQ785278 and OQ785279). Combined with the morphological and molecular analysis, the Iso-1 and Iso-2 were identified as Fusarium culmorum. The pathogenicity of the isolates was tested on two wheat cultivars using two methods: in vitro on seeds grown in sterile dishes and on seedlings. A 4 X 104 macroconidia suspension was prepared from 10 day-old culture of the isolate grown on PDA at 28 ºC. Seeds of two wheat cultivars, Hourani and Norsi were surface sterilized in 1% (v/v) bleach and rinsed in sterile distilled water three times. For the first method, seeds were soaked in the F. culmorum conidia suspension for 15 min and then dried using filter paper. The seeds were plated onto sterile paper towels in sterile plastic boxes and placed in a growth chamber. Three replicates with 10 seeds/replicate were used. Control Mock treatments used seeds treated with sterile distilled water. The germination percentage, coleoptile length, radicle length, longest seminal root length, and number of seminal roots were measured after 5 days. For the seedling-based pathogenicity test, seeds were planted in seedlings trays filled with sterilized 1:1:1 peat moss: sand: soil. 5 mL conidia suspension was drenched following seedling emergence. Ten replicates with one seed/replicate were used. Plants were watered when necessary to maintain appropriate soil growth conditions. The control seedlings were drenched with sterile distilled water. Disease symptoms were rated by the disease severity index (CRI) described by Mitter et al. (2006) after 35 days of inoculation. The in vitro test showed a reduction of germination and other seeds measurements in the presence of F. culmorum as compared to the control (Table 1 and Table 2, Figure 2). Similarly, the seedling's height, length of discoloration, disease score, disease severity index and germination percentage were all reduced in F. culmorum treated seedlings compared to the control. The two experiments showed that Cv. Norsi was more susceptible to FCR than Hourani (Table 1, Figure 2). F. culmorum was re-isolated from the roots of inoculated plants of both cultivars. The present study is the first report of the crown rot pathogen, F. culmorum on Jordanian wheat. Fusarium culmorum can cause significant economic losses and current research is ongoing to survey FCR-associated Fusarium spp. in Jordan, their genetic diversity, and QTL mapping for resistance genes in wheat landraces.

5.
Metabolites ; 13(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110196

RESUMO

Commiphora gileadensis L. is an important endangered medicinal plant that belongs to the family Burseraceae. In this study, C. gileadensis callus culture was established successfully using mature leaves as explants cultured on Murashige and Skoog (MS) media supplemented with 24.50 µM of indole butyric acid (IBA) and 2.22 µM 6-Benzylaminopurine (BAP) (callus induction media). The obtained callus was maintained on MS medium supplemented with 16.11 µM naphthalene acetic acid (NAA) in combination with 6.66 µM BAP, which resulted in a substantial increase in callus fresh and dry weights. The cell suspension culture was established successfully using liquid callus induction media supplemented with 3.0 mg·L-1 proline. Thereafter, the chemical constituents of different C. gileadensis methanolic extracts (callus, cell suspension, leaves, and seeds) were profiled, and their cytotoxic and antimicrobial properties were investigated. The LC-MS GNPS analyses were applied for chemical profiling of the methanolic plant extracts, and several natural products were identified, including flavonols, flavanones, and flavonoids glycosides, with two unusual families that included puromycin, 10-hydroxycamptothecin, and justicidin B. The methanolic extracts have shown selective antimicrobial and cytotoxic properties against different microbes and cancer cell lines. For instance, leaf extract showed the highest zone of inhibition for Staphylococcus aureus, while cell suspension culture was effective against Staphylococcus epidermidis and Staphylococcus aureus. All extracts showed selective activity against A549 cell lines for the cytotoxicity assay, while the leaf extract had a broad cytotoxic effect against all tested cell lines. This study revealed that C. gileadensis callus and cell suspension cultures can be employed to increase the in vitro formation of biologically active compounds that may have cytotoxicity and antibacterial action against different cancer cell lines and bacterial species. Further studies are required to isolate and identify such constituents that corroborate the observed activities.

6.
Plants (Basel) ; 11(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35631753

RESUMO

Callus and microshoot cultures were established for Chiliadenus montanus (Vhal.) Brullo. (Asteraceae), a medicinal plant known for producing volatile organic compounds (VOCs). Callus induction was achieved successfully by culturing leaf explants on full-strength Murashige and Skoog medium (MS) supplemented with 2.2 µM 2, 4-dichlorophenoxy acetic acid (2,4-D) and 6.9 µM kinetin (Kin). Successful direct shoot regeneration was achieved using nodal explants cultured onto half-strength MS media supplemented with 1.4 µM Gibberellic Acid (GA3) and 4.4 µM 6-Benzylaminopurine (BAP). Indirect microshoots were successfully regenerated using callus cultured on MS media supplemented with 8.8 µM BAP, 2.2 µM Zeatin, and 1.4 µM GA3 followed by culturing on MS media supplemented with 8.8 µM BAP and 0.5 µM naphthalene acetic acid (NAA). Using wild plant aerial parts, callus and microshoots samples, VOCs were extracted successfully using Headspace Solid-Phase Micro-Extraction (HS-SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). In wild plant extracts, sesquiterpene hydrocarbons were found to be predominant with the following principal components: Alloaromadendrene (11.92%), trans-Cadina-1(6),4-diene (7.54%), and α-caryophyllene (6.77%). The analysis of in vitro microshoots revealed high levels of oxygenated monoterpenes with cis-Myrtanol (16.62%), and ß-Cyclocitral (14.3%) as the main components. Callus extract was dominated by monoterpene hydrocarbons and the main compounds identified were (Z)-ß-Ocimene (22.27%), p-Cymene (15.13%), and α-pinene (13.78%). In conclusion, an efficient in vitro production system of VOCs in C. montanus was established that can be used in the future for boosting their production without endangering wild plants.

7.
Plants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34579338

RESUMO

The MADS-box gene family encodes a number of transcription factors that play key roles in various plant growth and development processes from response to environmental cues to cell differentiation and organ identity, especially the floral organogenesis, as in the prominent ABCDE model of flower development. Recently, the genome of American beautyberry (Callicarpa americana) has been sequenced. It is a shrub native to the southern region of United States with edible purple-colored berries; it is a member of the Lamiaceae family, a family of medical and agricultural importance. Seventy-eight MADS-box genes were identified from 17 chromosomes of the C. americana assembled genome. Peptide sequences blast and analysis of phylogenetic relationships with MADS-box genes of Sesame indicum, Solanum lycopersicum, Arabidopsis thaliana, and Amborella trichopoda were performed. Genes were separated into 32 type I and 46 type II MADS-box genes. C. americana MADS-box genes were clustered into four groups: MIKCC, MIKC*, Mα-type, and Mγ-type, while the Mß-type group was absent. Analysis of the gene structure revealed that from 1 to 15 exons exist in C. americana MADS-box genes. The number of exons in type II MADS-box genes (5-15) greatly exceeded the number in type I genes (1-9). The motif distribution analysis of the two types of MADS-box genes showed that type II MADS-box genes contained more motifs than type I genes. These results suggested that C. americana MADS-box genes type II had more complex structures and might have more diverse functions. The role of MIKC-type MADS-box genes in flower and fruit development was highlighted when the expression profile was analyzed in different organs transcriptomes. This study is the first genome-wide analysis of the C. americana MADS-box gene family, and the results will further support any functional and evolutionary studies of C. americana MADS-box genes and serve as a reference for related studies of other plants in the medically important Lamiaceae family.

8.
Plants (Basel) ; 10(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946624

RESUMO

Hybrid wheat breeding is one of the most promising technologies for further sustainable yield increases. However, the cleistogamous nature of wheat displays a major bottleneck for a successful hybrid breeding program. Thus, an optimized breeding strategy by developing appropriate parental lines with favorable floral trait combinations is the best way to enhance the outcrossing ability. This study, therefore, aimed to dissect the genetic basis of various floral traits using genome-wide association study (GWAS) and to assess the potential of genome-wide prediction (GP) for anther extrusion (AE), visual anther extrusion (VAE), pollen mass (PM), pollen shedding (PSH), pollen viability (PV), anther length (AL), openness of the flower (OPF), duration of floret opening (DFO) and stigma length. To this end, we employed 196 ICARDA spring bread wheat lines evaluated for three years and genotyped with 10,477 polymorphic SNP. In total, 70 significant markers were identified associated to the various assessed traits at FDR ≤ 0.05 contributing a minor to large proportion of the phenotypic variance (8-26.9%), affecting the traits either positively or negatively. GWAS revealed multi-marker-based associations among AE, VAE, PM, OPF and DFO, most likely linked markers, suggesting a potential genomic region controlling the genetic association of these complex traits. Of these markers, Kukri_rep_c103359_233 and wsnp_Ex_rep_c107911_91350930 deserve particular attention. The consistently significant markers with large effect could be useful for marker-assisted selection. Genomic selection revealed medium to high prediction accuracy ranging between 52% and 92% for the assessed traits with the least and maximum value observed for stigma length and visual anther extrusion, respectively. This indicates the feasibility to implement genomic selection to predict the performance of hybrid floral traits with high reliability.

9.
J Exp Bot ; 72(4): 1225-1244, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33159787

RESUMO

The sizes of plant organs such as fruit and seed are crucial yield components. Tomato KLUH underlies the locus fw3.2, an important regulator of fruit and seed weight. However, the mechanism by which the expression levels of KLUH affect organ size is poorly understood. We found that higher expression of SlKLUH increased cell proliferation in the pericarp within 5 d post-anthesis in tomato near-isogenic lines. Differential gene expression analyses showed that lower expression of SlKLUH was associated with increased expression of genes involved in lipid metabolism. Lipidomic analysis revealed that repression of SlKLUH mainly increased the contents of certain non-phosphorus glycerolipids and phospholipids and decreased the contents of four unknown lipids. Co-expression network analyses revealed that lipid metabolism was possibly associated with but not directly controlled by SlKLUH, and that this gene instead controls photosynthesis-related processes. In addition, many transcription factors putatively involved in the KLUH pathway were identified. Collectively, we show that SlKLUH regulates fruit and seed weight which is associated with altered lipid metabolism. The results expand our understanding of fruit and seed weight regulation and offer a valuable resource for functional studies of candidate genes putatively involved in regulation of organ size in tomato and other crops.


Assuntos
Frutas , Metabolismo dos Lipídeos , Fotossíntese , Sementes , Solanum lycopersicum , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
10.
Front Plant Sci ; 11: 642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670303

RESUMO

Barley spot blotch (SB) caused by Cochliobolus sativus is one of the major constrains to barley production in warmer regions worldwide. The study was undertaken to identify and estimate effects of loci underlying quantitative resistance to SB at the seedling and adult plant stages. A panel of 261 high input (HI-AM) barley genotypes consisting of released cultivars, advanced breeding lines, and landraces, was screened for resistance to SB. The seedling resistance screening was conducted using two virulent isolates from Morocco (ICSB3 and SB54) while the adult plant stage resistance was evaluated at two hot spot locations, Faizabad and Varanasi, in India under artificial inoculation using a mixture of prevalent virulent isolates. The HI-AM panel was genotyped using DArT-Seq high-throughput genotyping platform. Genome wide association mapping (GWAM) was conducted using 13,182 PAV and 6,311 SNP markers, for seedling and adult plant resistance. Both GLM and MLM model were employed in TASSEL (v 5.0) using principal component analysis and Kinship Matrix as covariates. Final disease rating and Area Under Disease Progress Curve (AUDPC) were used for the evaluation of adult stage plant resistance. The GWAM analysis indicated 23 QTL at the seedling stage (14 for isolate ICSB3 and 9 for isolate SB54), while 15 QTL were detected at the adult plant stage resistance (6 at Faizabad and 9 at Varanasi) and 5 for AUDPC based resistance at Varanasi. Common QTL at seedling and adult plant stages were found across all barley chromosomes. Seedling stage QTL explained together 73.24% of the variance for seedling resistance to isolate ICSB3 and 49.26% for isolate SB54, whereas, QTL for adult plant stage resistance explained together 38.32%, 44.09% and 26.42% of the variance at Faizabad and Varanasi and AUDPC at Varanasi, respectively. Several QTL identified in this study were also reported in previous studies using bi-parental and association mapping populations, corroborating our results. The promising QTL detected at both stages, once validated, can be used for marker assisted selection (MAS) in SB resistance barley breeding program.

11.
GM Crops Food ; 11(3): 164-170, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32264723

RESUMO

This study aimed to detect genetically modified maize (GMM) in seeds of eleven imported maize hybrids grown in Jordan. We used promoter 35 S and T-nos terminator for general screening of transgenic materials. Conventional PCR detected the specific events for the screening of Bt 11, MON810, and Bt176 events. Seeds of eleven maize hybrids samples showed a positive response to the 35 S promoter; nine out of eleven showed a positive response for T-nos terminator. Bt11 event was the most used in GMM seeds, where seven out of eleven samples showed positive results. Two out of eleven hybrids showed the presence of the Bt176 event; however, MON810 not detected in any of the tested hybrids. We studied the Bt11 event in imported GMM seeds in Jordan for the first time, reinforcing the need for a mandatory labeling system and a valid simple qualitative method in routine analysis of GMCs.


Assuntos
Sementes , Zea mays , DNA de Plantas , Jordânia , Plantas Geneticamente Modificadas
12.
Sci Rep ; 9(1): 6397, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024028

RESUMO

Since the dawn of agriculture, crop yield has always been impaired through abiotic stresses. In a field trial across five locations worldwide, we tested three abiotic stresses, nitrogen deficiency, drought and salinity, using HEB-YIELD, a selected subset of the wild barley nested association mapping population HEB-25. We show that barley flowering time genes Ppd-H1, Sdw1, Vrn-H1 and Vrn-H3 exert pleiotropic effects on plant development and grain yield. Under field conditions, these effects are strongly influenced by environmental cues like day length and temperature. For example, in Al-Karak, Jordan, the day length-sensitive wild barley allele of Ppd-H1 was associated with an increase of grain yield by up to 30% compared to the insensitive elite barley allele. The observed yield increase is accompanied by pleiotropic effects of Ppd-H1 resulting in shorter life cycle, extended grain filling period and increased grain size. Our study indicates that the adequate timing of plant development is crucial to maximize yield formation under harsh environmental conditions. We provide evidence that wild barley alleles, introgressed into elite barley cultivars, can be utilized to support grain yield formation. The presented knowledge may be transferred to related crop species like wheat and rice securing the rising global food demand for cereals.


Assuntos
Sinais (Psicologia) , Meio Ambiente , Flores/genética , Genes de Plantas , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Estresse Fisiológico/genética , Alelos , Geografia , Fenótipo , Locos de Características Quantitativas/genética , Análise de Regressão , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Tempo
13.
Front Plant Sci ; 9: 520, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740461

RESUMO

Barley stripe rust is caused by Puccinia striiformis f.sp. hordei, (Psh), occurs worldwide, and is a major disease in South Asia. The aim of this work was to identify and estimate effects of loci underlying quantitative resistance to rust at seedling and adult plant stages. HI-AM panel of 261 barley genotypes consisting of released cultivars from North and South America, Europe, Australia, advanced breeding lines, and local landraces from ICARDA barley program were screened at seedling and adult plant stages for resistance to Psh. Seedling resistance was evaluated with the five prevalent Psh races in India. Screening for the adult plant stage resistance was also performed in two different locations by inoculating with a mixture of the five races used for seedling screeing. The panel was genotyped using DaRT-Seq high-throughput genotyping platform. The genome-wide association mapping (GWAM) showed a total of 45 QTL located across the seven barley chromosomes for seedling resistance to the five races and 18 QTL for adult plant stage resistance. Common QTL for different races at seedling stage were found on all chromosomes except on chromosome 1H. Four common QTL associated with seedling and adult plant stage resistance were found on chromosomes 2, 5, and 6H. Moreover, one of the QTL located on the long arm of chromosome 5H showed stable effects across environments for adult plant stage resistance. Several QTL identified in this study were also reported before in bi-parental and association mapping populations studies validating current GWAM. However 15 new QTL were found at adult plant stage on all chromosomes except the 4H, explaining up to 36.79% of the variance. The promising QTL detected at both stages, once validated, can be used for MAS in Psh resistance breeding program globally.

14.
J Fungi (Basel) ; 4(2)2018 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-29710838

RESUMO

Pleurotus is considered an important genus that belongs to the family Pleurotaceae and includes the edible King Oyster mushroom (Pleurotus eryngii). In the present study, 19 Pleurotus isolates were collected from two locations in the north of Jordan (Tell ar-Rumman and Um-Qais). The morphological characteristics among collected isolates revealed that there was a morphological similarity among the collected isolates. Nucleotide sequence analysis of the internal transcribed spacer (ITS1⁻5.8S rDNA⁻ITS4 region) and 28S nuclear large subunit (nLSU) in the ribosomal DNA gene of the isolated stains showed that all of them share over 98% sequence similarity with P. eryngii. Genetic diversity among the collected strains was assessed using inter simple sequence repeat (ISSR) analysis using 18 different primer pairs. Using this approach, 141 out of 196 bands obtained were considered polymorphic and the highest percentage of polymorphism was observed using primer UBC827 (92.3%) with an overall Polymorphism Information Content (PIC) value of 70.56%. Cluster analysis showed that the Jordanian Pleurotus isolates fall into two main clades with a coefficient of similarity values ranging from 0.59 to 0.74 with a clear clustering based on collection sites. The results of the present study reveal that molecular techniques of ISSR and rDNA sequencing can greatly aid in classification and identification of Pleurotus spp. in Jordan.

15.
Front Plant Sci ; 8: 1277, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769970

RESUMO

Durum wheat is the 10th most important crop in the world, and its use traces back to the origin of agriculture. Unfortunately, in the last century only part of the genetic diversity available for this species has been captured in modern varieties through breeding. Here, the population structure and genetic diversity shared among elites and landraces collected from 32 countries was investigated. A total of 370 entries were genotyped with Axiom 35K array to identify 8,173 segregating single nucleotide polymorphisms (SNPs). Of these, 500 were selected as highly informative with a PIC value above 0.32 and used to test population structure via DAPC, STRUCTURE, and neighbor joining tree. A total of 10 sub-populations could be identified, six constituted by modern germplasm and four by landraces of different geographical origin. Interestingly, genomic comparison among groups indicated that Middle East and Ethiopia had the lowest level of allelic diversity, while breeding programs and landraces collected outside these regions were the richest in rare alleles. Further, phylogenetic analysis among landraces indicated that Ethiopia might represent a second center of origin of durum wheat, rather than a second domestication site as previously believed. Together, the analyses carried here provide a global picture of the available genetic diversity for this crop and shall guide its targeted use by breeders.

16.
Int J Mol Sci ; 18(7)2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28753977

RESUMO

In vitro preservation of transgenic tomato lines overexpressing the stress-responsive transcription factor SlAREB1 was studied by using slow growth and cryopreservation techniques. Slow growth preservation was performed by using different concentrations of sucrose (0, 100, 200, 300 mm) and abscisic acid (0, 4, 8, 12 µm) in Murashige and Skoog (MS) media, while cryopreservation was conducted by using encapsulation dehydration, V-cryoplates and seeds. Significant differences were observed between tested lines grown on MS media supplemented with 200 mm sucrose where transgenic lines overexpressing SlAREB1 showed improved growth when compared with negative control. The addition of abscisic acid (ABA) to the preservation media affected negatively transgenic lines growth and development when compared with ABA-free media. In encapsulation dehydration, non-cryopreserved transgenic lines overexpressing SlAREB1 pretreated in 0.8 M sucrose for 1 day and subjected to different dehydration periods showed significantly higher survival percentages when compared with negative control. For V-cryoplates technique, cryopreserved transgenic lines overexpressing SlAREB1 treated in 0.3 M sucrose for 3 days with or without cold acclimatization showed significantly higher survival percentages when compared with the negative control. Seed cryopreservation was performed successfully with a clear reduction in germination percentage in transgenic lines overexpressing high levels of SlAREB1. In conclusion, transgenic tomato lines overexpressing SlAREB1 were found to improve tolerance against different abiotic stresses associated with different in vitro preservation protocols.


Assuntos
Criopreservação/métodos , Plantas Geneticamente Modificadas , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Germinação , Técnicas In Vitro , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sacarose/farmacologia , Fatores de Transcrição/genética
17.
Comput Biol Chem ; 68: 22-28, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28231525

RESUMO

Surveying Fusarium resistance in wheat with easy applicable molecular markers such as simple sequence repeats (SSRs) is a prerequest for molecular breeding. Expressed sequence tags (ESTs) are one of the main sources for development of new SSR candidates. Therefore, 18.292 publicly available wheat ESTs were mined and genotyping of newly developed 55 EST-SSR derived primer pairs produced clear fragments in ten wheat cultivars carrying different levels of Fusarium resistance. Among the proved markers, 23 polymorphic EST-SSRs were obtained and related alleles were mostly found on B and D genome. Based on the fragment profiling and similarity analysis, a 327bp amplicon, which was a product of contig 1207 (chromosome 5BL), was detected only in Fusarium head blight (FHB) resistant cultivars (CM82036 and Sumai) and the amino acid sequences showed a similarity to pathogen related proteins. Another FHB resistance related EST-SSR, Contig 556 (chromosome 1BL) produced a 151bp fragment in Sumai and was associated to wax2-like protein. A polymorphic 204bp fragment, derived from Contig 578 (chromosome 1DL), was generated from root rot (FRR) resistant cultivars (2-49; Altay2000 and Sunco). A total of 98 alleles were displayed with an average of 1.8 alleles per locus and the polymorphic information content (PIC) ranged from 0.11 to 0.78. Dendrogram tree with two main and five sub-groups were displayed the highest genetic relationship between FRR resistant cultivars (2-49 and Altay2000), FRR sensitive cultivars (Seri82 and Scout66) and FHB resistant cultivars (CM82036 and Sumai). Thus, exploitation of these candidate EST-SSRs may help to genotype other wheat sources for Fusarium resistance.


Assuntos
Etiquetas de Sequências Expressas , Fusarium/fisiologia , Repetições de Microssatélites , Melhoramento Vegetal , Triticum/genética , Triticum/microbiologia , Fusarium/patogenicidade
18.
J Mol Evol ; 84(2-3): 144-148, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28116472

RESUMO

Microsatellites form hotspot regions for recombination. In this research, we investigated whether genic microsatellites can be responsible for generating new genes by enhancing crossover between gene containing microsatellites and other genomic regions. We tested our hypothesis on 33,531 UniGene entries containing microsatellites. Each sequence was divided into microsatellites upstream and downstream fragments, and each pair of sequences was compared to study the microsatellites effect. The candidate pairs of genes are supposed to share a high similar fragment in one side of the microsatellites, while the other fragments should be completely different. This in silico approach detected 448 valid pairs of sequences in which both of them showed semi-resemblance nature. The synteny analysis for the detected sequences against 55 plant genomes indicated low representation of them across plant kingdom. Our results will add a body of knowledge toward understanding the role of microsatellites in gene evolution.


Assuntos
Repetições de Microssatélites/genética , Estreptófitas/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Genes de Plantas/genética , Genoma de Planta/genética , Genômica/métodos , Sintenia/genética
20.
Int J Mol Sci ; 15(11): 19499-515, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25350113

RESUMO

Increasing cuticular wax accumulation in plants has been associated with improving drought tolerance in plants. In this study, a cDNA clone encoding the SlSHN1 transcription factor, the closest ortholog to WIN/SHN1 gene in Arabidopsis, was isolated from tomato plant. Expression analysis of SlSHN1 indicated that it is induced in response to drought conditions. The over-expression of SlSHN1 in tomato under the control of the constitutive CaMV 35S promoter produced plants that showed mild growth retardation phenotype with shiny and dark green leaves. Scanning electron microscopy showed that the over-expression of SlSHN1 in tomato resulted in higher cuticular wax deposition on leaf epidermial tissue when compared to non-transformed plants. Expression analysis in transgenic lines over-expressing SlSHN1 indicated that several wax-related synthesis genes were induced. Transgenic tomato plants over-expressing SlSHN1 showed higher drought tolerance when compared with wild type plants; this was reflected in delayed wilting of transgenic lines, improved water status and reduced water loss rate when compared with wild type plants. In conclusion, the SlSHN1 gene can modulate wax accumulation and could be utilized to enhance drought tolerance in tomato plant.


Assuntos
Adaptação Fisiológica/genética , Secas , Expressão Gênica , Genes de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Ceras/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fenótipo , Filogenia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...