Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(33): e2300053, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093214

RESUMO

Bottom-up production of semiconductor nanomaterials is often accompanied by inhomogeneity resulting in a spread in electronic properties which may be influenced by the nanoparticle geometry, crystal quality, stoichiometry, or doping. Using photoluminescence spectroscopy of a population of more than 11 000 individual zinc-doped gallium arsenide nanowires, inhomogeneity is revealed in, and correlation between doping and nanowire diameter by use of a Bayesian statistical approach. Recombination of hot-carriers is shown to be responsible for the photoluminescence lineshape; by exploiting lifetime variation across the population, hot-carrier dynamics is revealed at the sub-picosecond timescale showing interband electronic dynamics. High-throughput spectroscopy together with a Bayesian approach are shown to provide unique insight in an inhomogeneous nanomaterial population, and can reveal electronic dynamics otherwise requiring complex pump-probe experiments in highly non-equilibrium conditions.

2.
ACS Appl Mater Interfaces ; 15(8): 10958-10964, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779871

RESUMO

Bottom-up grown nanostructures often suffer from significant dimensional inhomogeneity, and for quantum confined heterostructures, this can lead to a corresponding large variation in electronic properties. A high-throughput characterization methodology is applied to >15,000 nanoskived sections of highly strained GaAsP/GaAs radial core/shell quantum well heterostructures revealing high emission uniformity. While scanning electron microscopy shows a wide nanowire diameter spread of 540-60+60 nm, photoluminescence reveals a tightly bounded band-to-band transition energy of 1546-3+4 meV. A highly strained core/shell nanowire design is shown to reduce the dependence of emission on the quantum well width variation significantly more than in the unstrained case.

3.
ACS Nano ; 16(6): 9086-9094, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35584237

RESUMO

Optoelectronic micro- and nanostructures have a vast parameter space to explore for modification and optimization of their functional performance. This paper reports on a data-led approach using high-throughput single nanostructure spectroscopy to probe >8000 structures, allowing for holistic analysis of multiple material and optoelectronic parameters with statistical confidence. The methodology is applied to surface-guided CsPbBr3 nanowires, which have complex and interrelated geometric, structural, and electronic properties. Photoluminescence-based measurements, studying both the surface and embedded interfaces, exploits the natural inter nanowire geometric variation to show that increasing the nanowire width reduces the optical bandgap, increases the recombination rate in the nanowire bulk, and reduces the rate at the surface interface. A model of carrier recombination and diffusion ascribes these trends to carrier density and strain effects at the interfaces and self-consistently retrieves values for carrier mobility, trap densities, bandgap, diffusion length, and internal quantum efficiency. The model predicts parameter trends, such as the variation of internal quantum efficiency with width, which is confirmed by experimental verification. As this approach requires minimal a priori information, it is widely applicable to nano- and microscale materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...