Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Z Naturforsch C J Biosci ; 79(3-4): 61-71, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38578162

RESUMO

A new series of 4-nitroimidazole bearing aryl piperazines 7-16, tetrazole 17 and 1,3,4-thiadiazole 18 derivatives was synthesized. All derivatives were screened for their anticancer activity against eight diverse human cancer cell lines (Capan-1, HCT-116, LN229, NCI-H460, DND-41, HL-60, K562, and Z138). Compound 17 proved the most potent compound of the series inhibiting proliferation of most of the selected human cancer cell lines with IC50 values in the low micromolar range. In addition, compound 11 exhibited IC50 values ranging 8.60-64.0 µM against a selection of cancer cell lines. These findings suggest that derivative 17 can potentially be a new lead compound for further development of novel antiproliferative agents. Additionally, 17-18 were assessed for their antibacterial and antituberculosis activity. Derivatives 17 and 18 were the most potent compounds of this series against both Staphylococcus aureus strain Wichita and a methicillin resistant strain of S. aureus (MRSA), as well as against Mycobacterium tuberculosis strain mc26230. The antiviral activity of 7-18 was also evaluated against diverse viruses, but no activity was detected. The docking study of compound 17 with putative protein targets in acute myeloid leukemia had been studied. Furthermore, the molecular dynamics simulation of 17 and 18 had been investigated.


Assuntos
Antibacterianos , Antineoplásicos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Nitroimidazóis , Humanos , Nitroimidazóis/farmacologia , Nitroimidazóis/química , Nitroimidazóis/síntese química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Simulação de Acoplamento Molecular , Staphylococcus aureus/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Tiadiazóis/farmacologia , Tiadiazóis/química , Tiadiazóis/síntese química , Proliferação de Células/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/síntese química , Antituberculosos/química
2.
ACS Appl Mater Interfaces ; 11(10): 10074-10088, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30777424

RESUMO

Deposition of functionalized nanoparticles onto solid surfaces has created a new revolution in electronic devices. Surface adsorbates such as ionic surfactants or additives are often used to stabilize such nanoparticle suspensions; however, little is presently known about the influence of such surfactants and additives on specific electronic and chemical functionality of nanoparticulate electronic devices. This work combines experimental measurements and theoretical models to probe the role of an ionic surfactant in the fundamental physical chemistry and electronic charge carrier behavior of photodiode devices prepared using multicomponent organic electronic nanoparticles. A large capacitance was detected, which could be subsequently manipulated using the external stimuli of light, temperature, and electric fields. It was demonstrated that analyzing this capacitance through the framework of classical semiconductor analysis produced substantially misleading information on the electronic trap density of the nanoparticles. Electrochemical impedance measurements demonstrated that it is actually the stabilizing surfactant that creates capacitance through two distinct mechanisms, each of which influenced charge carrier behavior differently. The first mechanism involved a dipole layer created at the contact interfaces by mobile ions, a mechanism that could be replicated by addition of ions to solution-cast devices and was shown to be the major origin of restricted electronic performance. The second mechanism consisted of immobile ionic shells around individual nanoparticles and was shown to have a minor impact on device performance as it could be removed upon addition of electronic charge in the photodiodes through either illumination or external bias. The results confirmed that the surfactant ions do not create a significantly increased level of charge carrier traps as has been previously suspected, but rather, preventing the diffusion of mobile ions through the nanoparticulate film and their accumulation at contacts is critical to optimize the performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...