Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17482, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504900

RESUMO

Mt. Spurr is the largest active volcano in Alaska of high explosive potential. The most recent activity, including two recent magmatic eruptions in 1953 and 1992, has occurred via the flanking Crater Peak. From 2004 to 2006, strong seismicity, gas flux, and heating were observed in the summit area, which had remained inactive for more than 5 Ka. To understand the cause of this reactivation, we performed repeated tomography inversions that clearly imaged the magma reservoir beneath Mt. Spurr and showed temporal changes in its shape and intensity. During the two years preceding the unrest, we observed ascension of the upper limit of the reservoir-related anomaly from a depth of 5 to 3 km below the surface, accompanied by strong seismicity. During the following years, the shape of the anomaly remained unchanged, but its intensity weakened. These observations may indicate the release of fluids from the ductile reservoir and fast upward ascent through the brittle cover that caused intensive seismicity and gas flux during the unrest from 2004 to 2006. The origin of this zone will possibly cause a resumption of explosive eruptions in the summit area of Mt. Spurr.

2.
Sci Rep ; 8(1): 10710, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013125

RESUMO

Several unusual strong earthquakes occurred in central India along the Narmada-Son Lineament (NSL) zone, far from active plate boundaries. To understand the role of collisional processes in the origin of this seismicity, we develop a numerical thermomechanical model of shortening between the Indian Plate and Asia. We show that at the final stage of collision, the shortening rate of the high mountain areas slows. The continuing convergence of India and Asia triggers the initiation of a new collision zone in continental part of India. Various geological and geophysical observations indicate that the NSL is a weakest zone with northward thrusting of the thinner central Indian lithosphere underneath the thicker northern part of the Indian Plate. We hypothesize that the NSL was reactivated during the final stage of the India Asia convergence and it will possibly form a new mountain belt within the Indian continent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...