Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 103(12): 3002-3008, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31573432

RESUMO

Alternaria species are the most important fungal pathogens that attack various crops as well as fruit trees such as pear and cause black spot disease. Here, a loop-mediated isothermal amplification (LAMP) assay is developed for the detection of Alternaria species. A. alternata cytochrome b (cyt-b) gene was used to design two pairs of primers and amplified a 229-bp segment of Aacyt-b gene. The results showed that LAMP assay is faster and simpler than polymerase chain reaction (PCR). LAMP assay is highly sensitive method for the detection of about 1 pg of genomic DNA of A. alternata by using optimized concentration of MgCl2 (4 mM) in final LAMP reaction. In contrast, the limit of detection was 1 ng of target DNA via conventional PCR. Among the genomic DNA of 46 fungal species, only the tubes containing DNA of Alternaria spp. except A. porri, A. solani, and A. infectoria changed color from orange to yellowish green with SYBR Green I including the main pathogens of pear black spot. The yellowish green color was indicative of DNA amplification. Moreover, LAMP assay was used for testing infected tissues among 22 healthy and diseased pear tissues; the orange color changed to yellowish green for infected tissues only. Altogether, we conclude that cyt-b gene can be used for the detection of Alternaria spp. via LAMP assay, which is involved in pear black spot disease.


Assuntos
Alternaria , Técnicas de Amplificação de Ácido Nucleico , Pyrus , Alternaria/genética , Citocromos b/genética , Primers do DNA , Microbiologia de Alimentos/métodos , Limite de Detecção , Reação em Cadeia da Polimerase , Pyrus/microbiologia
2.
Plant Dis ; 102(9): 1741-1747, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30125168

RESUMO

Ustilaginoidea virens is an important fungus that causes rice false smut disease. This disease significantly reduces both grain yield and quality. Various methods have been developed for the detection of U. virens but most of these methods need sophisticated equipment such as a thermal cycler. Here, we present a loop-mediated isothermal amplification (LAMP) assay for the specific detection of U. virens. This assay used a specific region of the UvG-ß1 gene (212-bp region) to design six LAMP primers. The LAMP assay was optimized by the combination of rapidity, simplicity, and high sensitivity for the detection of about 1 pg of target genomic DNA in the reaction whereas, with polymerase chain reaction (PCR), there was no amplification of DNA with concentrations less than 1 ng. Among the genomic DNA of 22 fungus species and two strains of U. virens, only the tube containing the DNA of U. virens changed to yellowish green with SYBR Green I. The color change was indicative of DNA amplification. No DNA was amplified from either the other 22 fungus species or the negative control. Moreover, 20 spikelets and 22 rice seed samples were used for the detection of rice false smut via LAMP. The results were comparable with conventional PCR. We conclude that gene UvG-ß1 coupled with LAMP assay, can be used for the detection and identification of U. virens gene via LAMP.


Assuntos
Hypocreales/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Primers do DNA/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase , Sementes/microbiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...